Skip to main content

creusot_std/
invariant.rs

1//! Type invariants
2
3use crate::prelude::*;
4#[cfg(creusot)]
5use crate::resolve::structural_resolve;
6use core::ops::{Deref, DerefMut};
7
8/// A user-defined _type invariant_.
9///
10/// Type invariants are additional pre- and postconditions added to each program functions.
11///
12/// # Example
13///
14/// ```rust
15/// # use creusot_std::prelude::*;
16/// struct SumTo10 {
17///     a: i32,
18///     b: i32,
19/// }
20/// // The type invariant constrains the set of valid `SumTo10`s to
21/// // only allow values where the sum of both fields is equal to 10.
22/// impl Invariant for SumTo10 {
23///     #[logic(open)]
24///     fn invariant(self) -> bool {
25///         pearlite! {
26///             self.a@ + self.b@ == 10
27///         }
28///     }
29/// }
30///
31/// // #[requires(inv(x))]     // generated by Creusot
32/// // #[ensures(inv(result))] // generated by Creusot
33/// fn invariant_holds(mut x: SumTo10) -> SumTo10 {
34///     assert!(x.a + x.b == 10); // We are given the invariant when entering the function
35///     x.a = 5; // we can break it locally!
36///     x.b = 5; // but it must be restored eventually
37///     x
38/// }
39/// ```
40///
41/// # Structural invariants
42///
43/// A type automatically inherits the invariants of its fields.
44///
45/// Examples:
46/// - `x: (T, U)` -> `inv(x.0) && inv(x.1)`
47/// - `x: &T` -> `inv(*x)`
48/// - `x: Vec<T>` -> `forall<i> 0 <= i && i < x@.len() ==> inv(x@[i])`
49///
50/// This does not prevent the type to additionnaly implement the `Invariant` trait.
51///
52/// ## Mutable borrows
53///
54/// For mutable borrows, the invariant is the conjunction of the invariants of the current
55/// and final values: `x: &mut T` -> `inv(*x) && inv(^x)`.
56///
57/// # Logical functions
58///
59/// Invariant pre- and postconditions are not added to logical functions:
60/// ```
61/// # use creusot_std::prelude::*;
62/// # struct SumTo10 { a: i32, b: i32 }
63/// # impl Invariant for SumTo10 {
64/// # #[logic(open)] fn invariant(self) -> bool { pearlite!{self.a@ + self.b@ == 10} }
65/// # }
66/// #[logic]
67/// #[ensures(x.a@ + x.b@ == 10)]
68/// fn not_provable(x: SumTo10) {}
69/// ```
70pub trait Invariant {
71    #[logic(prophetic)]
72    #[intrinsic("invariant")]
73    fn invariant(self) -> bool;
74}
75
76impl<T: ?Sized> Invariant for &T {
77    #[logic(open, prophetic, inline)]
78    #[creusot::trusted_trivial_if_param_trivial]
79    fn invariant(self) -> bool {
80        inv(*self)
81    }
82}
83
84impl<T: ?Sized> Invariant for &mut T {
85    #[logic(open, prophetic, inline)]
86    #[creusot::trusted_trivial_if_param_trivial]
87    fn invariant(self) -> bool {
88        pearlite! { inv(*self) && inv(^self) }
89    }
90}
91
92/// Whether the invariant of a value holds
93///
94/// This function is functionnaly equivalent to [`Invariant::invariant`], except that it
95/// can be called on any type (even if it does not implement [`Invariant`]).
96#[logic(prophetic, inline, open)]
97#[intrinsic("inv")]
98pub fn inv<T: ?Sized>(_: T) -> bool {
99    dead
100}
101
102#[cfg(not(creusot))]
103pub fn inv<T: ?Sized>(_: &T) -> bool {
104    panic!()
105}
106
107/// A type implements `InhabitedInvariants` when its type invariant is inhabited.
108/// This is needed to define subset types.
109pub trait InhabitedInvariant: Invariant {
110    #[logic]
111    #[ensures(result.invariant())]
112    fn inhabits() -> Self;
113}
114
115/// A _subset_ type.
116///
117/// This the same as `T`, with one exception: the invariant for `T` will also
118/// be verified in logic.
119///
120/// # Example
121///
122/// ```
123/// # use creusot_std::{invariant::{InhabitedInvariant, Subset}, prelude::*};
124/// struct Pair(i32);
125/// impl Invariant for Pair {
126///     #[logic] fn invariant(self) -> bool { self.0 % 2 == 0 }
127/// }
128/// impl InhabitedInvariant for Pair {
129///     #[logic]
130///     #[ensures(result.invariant())]
131///     fn inhabits() -> Self { Self(0i32) }
132/// }
133///
134/// #[logic]
135/// fn pair_in_logic(x: Subset<Pair>) {
136///     proof_assert!(x.0 % 2 == 0);
137/// }
138/// ```
139#[repr(transparent)]
140#[opaque]
141pub struct Subset<T: InhabitedInvariant>(T);
142
143impl<T: InhabitedInvariant + DeepModel> DeepModel for Subset<T> {
144    type DeepModelTy = T::DeepModelTy;
145
146    #[logic(inline)]
147    fn deep_model(self) -> T::DeepModelTy {
148        pearlite! { self.inner().deep_model() }
149    }
150}
151
152impl<T: InhabitedInvariant> Subset<T> {
153    #[trusted]
154    #[logic(opaque)]
155    #[ensures(result.invariant())]
156    pub fn inner(self) -> T {
157        dead
158    }
159
160    /// Create a new element of `Subset<T>` in logic.
161    ///
162    /// As per the [documentation of Subset](Subset), the returned value will
163    /// satisfy `T`'s type invariant.
164    #[trusted]
165    #[logic(opaque)]
166    #[requires(x.invariant())]
167    #[ensures(result.inner() == x)]
168    pub fn new_logic(x: T) -> Self {
169        let _ = x;
170        dead
171    }
172
173    /// Characterize that `Subset<T>` indeed contains a `T` (and only a `T`).
174    ///
175    /// # Example
176    ///
177    /// ```
178    /// # use creusot_std::{invariant::Subset, prelude::*};
179    /// #[requires(x == y.inner())]
180    /// fn foo<T: InhabitedInvariant>(x: T, y: Subset<T>) {
181    ///     let x = Subset::new(x);
182    ///     let _ = snapshot!(Subset::<T>::inner_inj);
183    ///     proof_assert!(x == y);
184    /// }
185    /// ```
186    #[trusted]
187    #[logic(opaque)]
188    #[requires(self.inner() == other.inner())]
189    #[ensures(self == other)]
190    pub fn inner_inj(self, other: Self) {}
191
192    /// Create a new element of `Subset<T>`.
193    ///
194    /// # Example
195    ///
196    /// ```
197    /// # use creusot_std::{invariant::{InhabitedInvariant, Subset}, prelude::*};
198    /// // Use the `Pair` type defined in `Subset`'s documentation
199    /// # struct Pair(i32);
200    /// # impl Invariant for Pair {
201    /// #     #[logic] fn invariant(self) -> bool { self.0 % 2 == 0 } }
202    /// # impl InhabitedInvariant for Pair {
203    /// #     #[logic] #[ensures(result.invariant())]
204    /// #     fn inhabits() -> Self { Self(0i32) } }
205    ///
206    /// let p = Subset::new(Pair(0));
207    /// proof_assert!(p.inner().0 == 0i32);
208    /// ```
209    #[check(ghost)]
210    #[trusted]
211    #[ensures(result == Self::new_logic(x))]
212    pub fn new(x: T) -> Self {
213        Subset(x)
214    }
215
216    /// Unwrap the `Subset` to get the inner value.
217    ///
218    /// # Example
219    ///
220    /// ```
221    /// # use creusot_std::{invariant::{InhabitedInvariant, Subset}, prelude::*};
222    /// // Use the `Pair` type defined in `Subset`'s documentation
223    /// # struct Pair(i32);
224    /// # impl Invariant for Pair {
225    /// #     #[logic] fn invariant(self) -> bool { self.0 % 2 == 0 } }
226    /// # impl InhabitedInvariant for Pair {
227    /// #     #[logic] #[ensures(result.invariant())]
228    /// #     fn inhabits() -> Self { Self(0i32) } }
229    ///
230    /// fn changes_pair(p: &mut Subset<Pair>) { /* ... */ }
231    ///
232    /// let mut p = Subset::new(Pair(0));
233    /// changes_pair(&mut p);
234    /// let inner = p.into_inner();
235    /// proof_assert!(inner.0 % 2 == 0);
236    /// ```
237    #[check(ghost)]
238    #[trusted]
239    #[ensures(result == self.inner())]
240    pub fn into_inner(self) -> T {
241        self.0
242    }
243}
244
245impl<T: InhabitedInvariant> Deref for Subset<T> {
246    type Target = T;
247
248    #[check(ghost)]
249    #[trusted]
250    #[ensures(*result == self.inner())]
251    fn deref(&self) -> &Self::Target {
252        &self.0
253    }
254}
255
256impl<T: InhabitedInvariant> DerefMut for Subset<T> {
257    #[check(ghost)]
258    #[trusted]
259    #[ensures(*result == self.inner())]
260    #[ensures(^result == (^self).inner())]
261    fn deref_mut(&mut self) -> &mut Self::Target {
262        &mut self.0
263    }
264}
265
266impl<T: InhabitedInvariant + Clone> Clone for Subset<T> {
267    #[ensures(T::clone.postcondition((&(self.inner()),), result.inner()))]
268    fn clone(&self) -> Self {
269        snapshot! { Self::inner_inj };
270        Self::new(self.deref().clone())
271    }
272}
273
274impl<T: InhabitedInvariant + Copy> Copy for Subset<T> {}
275
276impl<T: InhabitedInvariant> Resolve for Subset<T> {
277    #[logic(open, prophetic, inline)]
278    fn resolve(self) -> bool {
279        pearlite! { resolve(self.inner()) }
280    }
281
282    #[trusted]
283    #[logic(prophetic)]
284    #[requires(structural_resolve(self))]
285    #[ensures(self.resolve())]
286    fn resolve_coherence(self) {}
287}
288
289impl<T: InhabitedInvariant + DeepModel + PartialEq> PartialEq for Subset<T> {
290    #[trusted]
291    #[ensures(result == (self.deep_model() == rhs.deep_model()))]
292    fn eq(&self, rhs: &Self) -> bool {
293        self.0 == rhs.0
294    }
295}
296
297impl<T: InhabitedInvariant + DeepModel + Eq> Eq for Subset<T> {}