creusot_std/logic/ra/
fmap.rs

1#[cfg(creusot)]
2use crate::logic::such_that;
3use crate::{
4    logic::{
5        FMap,
6        ra::{RA, UnitRA, update::LocalUpdate},
7    },
8    prelude::*,
9};
10
11impl<K, V: RA> RA for FMap<K, V> {
12    #[logic(open)]
13    fn op(self, other: Self) -> Option<Self> {
14        pearlite! {
15            if (forall<k: K> self.get(k).op(other.get(k)) != None) {
16                Some(self.total_op(other))
17            } else {
18                None
19            }
20        }
21    }
22
23    #[logic(open)]
24    #[ensures(match result {
25        Some(c) => factor.op(c) == Some(self),
26        None => forall<c: Self> factor.op(c) != Some(self),
27    })]
28    fn factor(self, factor: Self) -> Option<Self> {
29        pearlite! {
30            if (forall<k: K> factor.get(k).incl(self.get(k))) {
31                let res = self.filter_map(|(k, vo): (K, V)|
32                    match Some(vo).factor(factor.get(k)) {
33                        Some(r) => r,
34                        None => None,
35                });
36                proof_assert!(
37                    match factor.op(res) {
38                        None => false,
39                        Some(o) => o.ext_eq(self)
40                    }
41                );
42                Some(res)
43            } else {
44                None
45            }
46        }
47    }
48
49    #[logic(law)]
50    #[ensures(a.op(b) == b.op(a))]
51    fn commutative(a: Self, b: Self) {
52        proof_assert!(match (a.op(b), b.op(a)) {
53            (Some(ab), Some(ba)) => ab.ext_eq(ba),
54            (None, None) => true,
55            _ => false,
56        })
57    }
58
59    #[logic(law)]
60    #[ensures(a.op(b).and_then_logic(|ab: Self| ab.op(c)) == b.op(c).and_then_logic(|bc| a.op(bc)))]
61    fn associative(a: Self, b: Self, c: Self) {
62        match (a.op(b), b.op(c)) {
63            (Some(ab), Some(bc)) => match (ab.op(c), a.op(bc)) {
64                (Some(x), Some(y)) => proof_assert!(x.ext_eq(y)),
65                _ => (),
66            },
67            _ => (),
68        }
69    }
70
71    #[logic(open)]
72    fn core(self) -> Option<Self> {
73        Some(self.filter_map(|(_, v): (K, V)| v.core()))
74    }
75
76    #[logic]
77    #[requires(self.core() != None)]
78    #[ensures({
79        let c = self.core().unwrap_logic();
80        c.op(c) == Some(c)
81    })]
82    #[ensures(self.core().unwrap_logic().op(self) == Some(self))]
83    fn core_idemp(self) {
84        self.core_total_idemp()
85    }
86
87    #[logic]
88    #[requires(i.op(i) == Some(i))]
89    #[requires(i.op(self) == Some(self))]
90    #[ensures(match self.core() {
91        Some(c) => i.incl(c),
92        None => false,
93    })]
94    fn core_is_maximal_idemp(self, i: Self) {
95        let _ = V::core_is_maximal_idemp;
96    }
97}
98
99impl<K, V: RA> UnitRA for FMap<K, V> {
100    #[logic(open)]
101    #[ensures(forall<x: Self> #[trigger(x.op(result))] x.op(result) == Some(x))]
102    fn unit() -> Self {
103        proof_assert!(forall<x: Self> x.op(Self::empty()).unwrap_logic().ext_eq(x));
104        Self::empty()
105    }
106
107    #[logic(open)]
108    #[ensures(self.core() == Some(result))]
109    fn core_total(self) -> Self {
110        self.filter_map(|(_, v): (K, V)| v.core())
111    }
112
113    #[logic]
114    #[ensures(self.core_total().op(self.core_total()) == Some(self.core_total()))]
115    #[ensures(self.core_total().op(self) == Some(self))]
116    fn core_total_idemp(self) {
117        let _ = V::core_idemp;
118        let c = self.core_total();
119        proof_assert!(c.op(c).unwrap_logic().ext_eq(c));
120        proof_assert!(c.op(self).unwrap_logic().ext_eq(self));
121    }
122}
123
124impl<K, V: RA> FMap<K, V> {
125    #[logic]
126    #[requires(forall<k: K> self.get(k).op(other.get(k)) != None)]
127    #[ensures(forall<k: K> Some(result.get(k)) == self.get(k).op(other.get(k)))]
128    pub fn total_op(self, other: Self) -> Self {
129        self.merge(other, |(x, y): (V, V)| match x.op(y) {
130            Some(r) => r,
131            _ => such_that(|_| true),
132        })
133    }
134}
135
136pub struct FMapInsertLocalUpdate<K, V>(pub Snapshot<K>, pub Snapshot<V>);
137
138impl<K, V: RA> LocalUpdate<FMap<K, V>> for FMapInsertLocalUpdate<K, V> {
139    #[logic(open)]
140    fn premise(self, from_auth: FMap<K, V>, _: FMap<K, V>) -> bool {
141        from_auth.get(*self.0) == None
142    }
143
144    #[logic(open)]
145    fn update(self, from_auth: FMap<K, V>, from_frag: FMap<K, V>) -> (FMap<K, V>, FMap<K, V>) {
146        (from_auth.insert(*self.0, *self.1), from_frag.insert(*self.0, *self.1))
147    }
148
149    #[logic]
150    #[allow(unused)]
151    #[requires(self.premise(from_auth, from_frag))]
152    #[requires(Some(from_frag).op(frame) == Some(Some(from_auth)))]
153    #[ensures({
154        let (to_auth, to_frag) = self.update(from_auth, from_frag);
155        Some(to_frag).op(frame) == Some(Some(to_auth))
156    })]
157    fn frame_preserving(
158        self,
159        from_auth: FMap<K, V>,
160        from_frag: FMap<K, V>,
161        frame: Option<FMap<K, V>>,
162    ) {
163        let (to_auth, to_frag) = self.update(from_auth, from_frag);
164        proof_assert!(match Some(to_frag).op(frame) {
165            Some(Some(x)) => to_auth.ext_eq(x),
166            _ => false,
167        });
168    }
169}