Struct creusot_contracts::std::num::NonZero
1.79.0 · source · pub struct NonZero<T>(/* private fields */)
where
T: ZeroablePrimitive;
Expand description
A value that is known not to equal zero.
This enables some memory layout optimization.
For example, Option<NonZero<u32>>
is the same size as u32
:
use core::{mem::size_of, num::NonZero};
assert_eq!(size_of::<Option<NonZero<u32>>>(), size_of::<u32>());
Implementations§
source§impl<T> NonZero<T>where
T: ZeroablePrimitive,
impl<T> NonZero<T>where
T: ZeroablePrimitive,
1.28.0 (const: 1.47.0) · sourcepub const fn new(n: T) -> Option<NonZero<T>>
pub const fn new(n: T) -> Option<NonZero<T>>
Creates a non-zero if the given value is not zero.
1.28.0 (const: 1.28.0) · sourcepub const unsafe fn new_unchecked(n: T) -> NonZero<T>
pub const unsafe fn new_unchecked(n: T) -> NonZero<T>
Creates a non-zero without checking whether the value is non-zero. This results in undefined behaviour if the value is zero.
§Safety
The value must not be zero.
sourcepub fn from_mut(n: &mut T) -> Option<&mut NonZero<T>>
🔬This is a nightly-only experimental API. (nonzero_from_mut
)
pub fn from_mut(n: &mut T) -> Option<&mut NonZero<T>>
nonzero_from_mut
)Converts a reference to a non-zero mutable reference if the referenced value is not zero.
sourcepub unsafe fn from_mut_unchecked(n: &mut T) -> &mut NonZero<T>
🔬This is a nightly-only experimental API. (nonzero_from_mut
)
pub unsafe fn from_mut_unchecked(n: &mut T) -> &mut NonZero<T>
nonzero_from_mut
)Converts a mutable reference to a non-zero mutable reference without checking whether the referenced value is non-zero. This results in undefined behavior if the referenced value is zero.
§Safety
The referenced value must not be zero.
source§impl NonZero<u8>
impl NonZero<u8>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u8>::new(u8::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u8>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<u8>::new(0b100_0000)?;
let b = NonZero::<u8>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<u8> = _
pub const MIN: NonZero<u8> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<u8>::MIN.get(), 1u8);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u8) -> Option<NonZero<u8>>
pub const fn checked_add(self, other: u8) -> Option<NonZero<u8>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1u8)?;
let two = NonZero::new(2u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u8) -> NonZero<u8>
pub const fn saturating_add(self, other: u8) -> NonZero<u8>
Adds an unsigned integer to a non-zero value.
Return NonZero::<u8>::MAX
on overflow.
§Examples
let one = NonZero::new(1u8)?;
let two = NonZero::new(2u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: u8) -> NonZero<u8>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: u8) -> NonZero<u8>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u8::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1u8)?;
let two = NonZero::new(2u8)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<u8>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<u8>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u8)?;
let three = NonZero::new(3u8)?;
let four = NonZero::new(4u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u8::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7u8)?.ilog2(), 2);
assert_eq!(NonZero::new(8u8)?.ilog2(), 3);
assert_eq!(NonZero::new(9u8)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u8::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99u8)?.ilog10(), 1);
assert_eq!(NonZero::new(100u8)?.ilog10(), 2);
assert_eq!(NonZero::new(101u8)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<u8>) -> NonZero<u8>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<u8>) -> NonZero<u8>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1u8)?;
let two = NonZero::new(2u8)?;
let four = NonZero::new(4u8)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8u8)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10u8)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<u8>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<u8>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10u8)?;
let three = NonZero::new(3u8)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<u8>) -> Option<NonZero<u8>>
pub const fn checked_mul(self, other: NonZero<u8>) -> Option<NonZero<u8>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u8)?;
let four = NonZero::new(4u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<u8>) -> NonZero<u8>
pub const fn saturating_mul(self, other: NonZero<u8>) -> NonZero<u8>
Multiplies two non-zero integers together.
Return NonZero::<u8>::MAX
on overflow.
§Examples
let two = NonZero::new(2u8)?;
let four = NonZero::new(4u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<u8>) -> NonZero<u8>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<u8>) -> NonZero<u8>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u8::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2u8)?;
let four = NonZero::new(4u8)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<u8>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<u8>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3u8)?;
let twenty_seven = NonZero::new(27u8)?;
let half_max = NonZero::new(u8::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<u8>
pub const fn saturating_pow(self, other: u32) -> NonZero<u8>
Raise non-zero value to an integer power.
Return NonZero::<u8>::MAX
on overflow.
§Examples
let three = NonZero::new(3u8)?;
let twenty_seven = NonZero::new(27u8)?;
let max = NonZero::new(u8::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<u16>
impl NonZero<u16>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u16>::new(u16::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u16>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<u16>::new(0b100_0000)?;
let b = NonZero::<u16>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<u16> = _
pub const MIN: NonZero<u16> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<u16>::MIN.get(), 1u16);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u16) -> Option<NonZero<u16>>
pub const fn checked_add(self, other: u16) -> Option<NonZero<u16>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1u16)?;
let two = NonZero::new(2u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u16) -> NonZero<u16>
pub const fn saturating_add(self, other: u16) -> NonZero<u16>
Adds an unsigned integer to a non-zero value.
Return NonZero::<u16>::MAX
on overflow.
§Examples
let one = NonZero::new(1u16)?;
let two = NonZero::new(2u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: u16) -> NonZero<u16>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: u16) -> NonZero<u16>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u16::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1u16)?;
let two = NonZero::new(2u16)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<u16>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<u16>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u16)?;
let three = NonZero::new(3u16)?;
let four = NonZero::new(4u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u16::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7u16)?.ilog2(), 2);
assert_eq!(NonZero::new(8u16)?.ilog2(), 3);
assert_eq!(NonZero::new(9u16)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u16::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99u16)?.ilog10(), 1);
assert_eq!(NonZero::new(100u16)?.ilog10(), 2);
assert_eq!(NonZero::new(101u16)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<u16>) -> NonZero<u16>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<u16>) -> NonZero<u16>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1u16)?;
let two = NonZero::new(2u16)?;
let four = NonZero::new(4u16)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8u16)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10u16)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<u16>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<u16>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10u16)?;
let three = NonZero::new(3u16)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<u16>) -> Option<NonZero<u16>>
pub const fn checked_mul(self, other: NonZero<u16>) -> Option<NonZero<u16>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u16)?;
let four = NonZero::new(4u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<u16>) -> NonZero<u16>
pub const fn saturating_mul(self, other: NonZero<u16>) -> NonZero<u16>
Multiplies two non-zero integers together.
Return NonZero::<u16>::MAX
on overflow.
§Examples
let two = NonZero::new(2u16)?;
let four = NonZero::new(4u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<u16>) -> NonZero<u16>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<u16>) -> NonZero<u16>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u16::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2u16)?;
let four = NonZero::new(4u16)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<u16>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<u16>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3u16)?;
let twenty_seven = NonZero::new(27u16)?;
let half_max = NonZero::new(u16::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<u16>
pub const fn saturating_pow(self, other: u32) -> NonZero<u16>
Raise non-zero value to an integer power.
Return NonZero::<u16>::MAX
on overflow.
§Examples
let three = NonZero::new(3u16)?;
let twenty_seven = NonZero::new(27u16)?;
let max = NonZero::new(u16::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<u32>
impl NonZero<u32>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u32>::new(u32::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u32>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<u32>::new(0b100_0000)?;
let b = NonZero::<u32>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<u32> = _
pub const MIN: NonZero<u32> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<u32>::MIN.get(), 1u32);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u32) -> Option<NonZero<u32>>
pub const fn checked_add(self, other: u32) -> Option<NonZero<u32>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1u32)?;
let two = NonZero::new(2u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u32) -> NonZero<u32>
pub const fn saturating_add(self, other: u32) -> NonZero<u32>
Adds an unsigned integer to a non-zero value.
Return NonZero::<u32>::MAX
on overflow.
§Examples
let one = NonZero::new(1u32)?;
let two = NonZero::new(2u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: u32) -> NonZero<u32>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: u32) -> NonZero<u32>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u32::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1u32)?;
let two = NonZero::new(2u32)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<u32>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<u32>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u32)?;
let three = NonZero::new(3u32)?;
let four = NonZero::new(4u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u32::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7u32)?.ilog2(), 2);
assert_eq!(NonZero::new(8u32)?.ilog2(), 3);
assert_eq!(NonZero::new(9u32)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u32::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99u32)?.ilog10(), 1);
assert_eq!(NonZero::new(100u32)?.ilog10(), 2);
assert_eq!(NonZero::new(101u32)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<u32>) -> NonZero<u32>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<u32>) -> NonZero<u32>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1u32)?;
let two = NonZero::new(2u32)?;
let four = NonZero::new(4u32)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8u32)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10u32)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<u32>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10u32)?;
let three = NonZero::new(3u32)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<u32>) -> Option<NonZero<u32>>
pub const fn checked_mul(self, other: NonZero<u32>) -> Option<NonZero<u32>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u32)?;
let four = NonZero::new(4u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<u32>) -> NonZero<u32>
pub const fn saturating_mul(self, other: NonZero<u32>) -> NonZero<u32>
Multiplies two non-zero integers together.
Return NonZero::<u32>::MAX
on overflow.
§Examples
let two = NonZero::new(2u32)?;
let four = NonZero::new(4u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<u32>) -> NonZero<u32>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<u32>) -> NonZero<u32>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u32::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2u32)?;
let four = NonZero::new(4u32)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<u32>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<u32>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3u32)?;
let twenty_seven = NonZero::new(27u32)?;
let half_max = NonZero::new(u32::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<u32>
pub const fn saturating_pow(self, other: u32) -> NonZero<u32>
Raise non-zero value to an integer power.
Return NonZero::<u32>::MAX
on overflow.
§Examples
let three = NonZero::new(3u32)?;
let twenty_seven = NonZero::new(27u32)?;
let max = NonZero::new(u32::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<u64>
impl NonZero<u64>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u64>::new(u64::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u64>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<u64>::new(0b100_0000)?;
let b = NonZero::<u64>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<u64> = _
pub const MIN: NonZero<u64> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<u64>::MIN.get(), 1u64);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u64) -> Option<NonZero<u64>>
pub const fn checked_add(self, other: u64) -> Option<NonZero<u64>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1u64)?;
let two = NonZero::new(2u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u64) -> NonZero<u64>
pub const fn saturating_add(self, other: u64) -> NonZero<u64>
Adds an unsigned integer to a non-zero value.
Return NonZero::<u64>::MAX
on overflow.
§Examples
let one = NonZero::new(1u64)?;
let two = NonZero::new(2u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: u64) -> NonZero<u64>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: u64) -> NonZero<u64>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u64::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1u64)?;
let two = NonZero::new(2u64)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<u64>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<u64>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u64)?;
let three = NonZero::new(3u64)?;
let four = NonZero::new(4u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u64::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7u64)?.ilog2(), 2);
assert_eq!(NonZero::new(8u64)?.ilog2(), 3);
assert_eq!(NonZero::new(9u64)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u64::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99u64)?.ilog10(), 1);
assert_eq!(NonZero::new(100u64)?.ilog10(), 2);
assert_eq!(NonZero::new(101u64)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<u64>) -> NonZero<u64>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<u64>) -> NonZero<u64>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1u64)?;
let two = NonZero::new(2u64)?;
let four = NonZero::new(4u64)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8u64)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10u64)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<u64>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<u64>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10u64)?;
let three = NonZero::new(3u64)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<u64>) -> Option<NonZero<u64>>
pub const fn checked_mul(self, other: NonZero<u64>) -> Option<NonZero<u64>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u64)?;
let four = NonZero::new(4u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<u64>) -> NonZero<u64>
pub const fn saturating_mul(self, other: NonZero<u64>) -> NonZero<u64>
Multiplies two non-zero integers together.
Return NonZero::<u64>::MAX
on overflow.
§Examples
let two = NonZero::new(2u64)?;
let four = NonZero::new(4u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<u64>) -> NonZero<u64>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<u64>) -> NonZero<u64>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u64::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2u64)?;
let four = NonZero::new(4u64)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<u64>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<u64>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3u64)?;
let twenty_seven = NonZero::new(27u64)?;
let half_max = NonZero::new(u64::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<u64>
pub const fn saturating_pow(self, other: u32) -> NonZero<u64>
Raise non-zero value to an integer power.
Return NonZero::<u64>::MAX
on overflow.
§Examples
let three = NonZero::new(3u64)?;
let twenty_seven = NonZero::new(27u64)?;
let max = NonZero::new(u64::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<u128>
impl NonZero<u128>
1.67.0 · sourcepub const BITS: u32 = 128u32
pub const BITS: u32 = 128u32
The size of this non-zero integer type in bits.
This value is equal to u128::BITS
.
§Examples
assert_eq!(NonZero::<u128>::BITS, u128::BITS);
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u128>::new(u128::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<u128>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<u128>::new(0b100_0000)?;
let b = NonZero::<u128>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<u128> = _
pub const MIN: NonZero<u128> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<u128>::MIN.get(), 1u128);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u128) -> Option<NonZero<u128>>
pub const fn checked_add(self, other: u128) -> Option<NonZero<u128>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1u128)?;
let two = NonZero::new(2u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u128) -> NonZero<u128>
pub const fn saturating_add(self, other: u128) -> NonZero<u128>
Adds an unsigned integer to a non-zero value.
Return NonZero::<u128>::MAX
on overflow.
§Examples
let one = NonZero::new(1u128)?;
let two = NonZero::new(2u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: u128) -> NonZero<u128>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: u128) -> NonZero<u128>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u128::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1u128)?;
let two = NonZero::new(2u128)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<u128>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<u128>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u128)?;
let three = NonZero::new(3u128)?;
let four = NonZero::new(4u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u128::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7u128)?.ilog2(), 2);
assert_eq!(NonZero::new(8u128)?.ilog2(), 3);
assert_eq!(NonZero::new(9u128)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u128::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99u128)?.ilog10(), 1);
assert_eq!(NonZero::new(100u128)?.ilog10(), 2);
assert_eq!(NonZero::new(101u128)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<u128>) -> NonZero<u128>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<u128>) -> NonZero<u128>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1u128)?;
let two = NonZero::new(2u128)?;
let four = NonZero::new(4u128)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8u128)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10u128)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<u128>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<u128>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10u128)?;
let three = NonZero::new(3u128)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<u128>) -> Option<NonZero<u128>>
pub const fn checked_mul(self, other: NonZero<u128>) -> Option<NonZero<u128>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2u128)?;
let four = NonZero::new(4u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<u128>) -> NonZero<u128>
pub const fn saturating_mul(self, other: NonZero<u128>) -> NonZero<u128>
Multiplies two non-zero integers together.
Return NonZero::<u128>::MAX
on overflow.
§Examples
let two = NonZero::new(2u128)?;
let four = NonZero::new(4u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<u128>) -> NonZero<u128>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<u128>) -> NonZero<u128>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u128::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2u128)?;
let four = NonZero::new(4u128)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<u128>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<u128>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3u128)?;
let twenty_seven = NonZero::new(27u128)?;
let half_max = NonZero::new(u128::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<u128>
pub const fn saturating_pow(self, other: u32) -> NonZero<u128>
Raise non-zero value to an integer power.
Return NonZero::<u128>::MAX
on overflow.
§Examples
let three = NonZero::new(3u128)?;
let twenty_seven = NonZero::new(27u128)?;
let max = NonZero::new(u128::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<usize>
impl NonZero<usize>
1.67.0 · sourcepub const BITS: u32 = 64u32
pub const BITS: u32 = 64u32
The size of this non-zero integer type in bits.
This value is equal to usize::BITS
.
§Examples
assert_eq!(NonZero::<usize>::BITS, usize::BITS);
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<usize>::new(usize::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<usize>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<usize>::new(0b100_0000)?;
let b = NonZero::<usize>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<usize> = _
pub const MIN: NonZero<usize> = _
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<usize>::MIN.get(), 1usize);
1.70.0 · sourcepub const MAX: NonZero<usize> = _
pub const MAX: NonZero<usize> = _
The largest value that can be represented by this non-zero
integer type,
equal to usize::MAX
.
§Examples
assert_eq!(NonZero::<usize>::MAX.get(), usize::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: usize) -> Option<NonZero<usize>>
pub const fn checked_add(self, other: usize) -> Option<NonZero<usize>>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: usize) -> NonZero<usize>
pub const fn saturating_add(self, other: usize) -> NonZero<usize>
Adds an unsigned integer to a non-zero value.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
sourcepub const unsafe fn unchecked_add(self, other: usize) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: usize) -> NonZero<usize>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > usize::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<usize>>
pub const fn checked_next_power_of_two(self) -> Option<NonZero<usize>>
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2usize)?;
let three = NonZero::new(3usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
usize::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7usize)?.ilog2(), 2);
assert_eq!(NonZero::new(8usize)?.ilog2(), 3);
assert_eq!(NonZero::new(9usize)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
usize::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99usize)?.ilog10(), 1);
assert_eq!(NonZero::new(100usize)?.ilog10(), 2);
assert_eq!(NonZero::new(101usize)?.ilog10(), 2);
sourcepub const fn midpoint(self, rhs: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (num_midpoint
)
pub const fn midpoint(self, rhs: NonZero<usize>) -> NonZero<usize>
num_midpoint
)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8usize)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10usize)?;
assert!(!ten.is_power_of_two());
sourcepub const fn isqrt(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (isqrt
)
pub const fn isqrt(self) -> NonZero<usize>
isqrt
)Returns the square root of the number, rounded down.
§Examples
Basic usage:
#![feature(isqrt)]
let ten = NonZero::new(10usize)?;
let three = NonZero::new(3usize)?;
assert_eq!(ten.isqrt(), three);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<usize>) -> Option<NonZero<usize>>
pub const fn checked_mul(self, other: NonZero<usize>) -> Option<NonZero<usize>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<usize>) -> NonZero<usize>
pub const fn saturating_mul(self, other: NonZero<usize>) -> NonZero<usize>
Multiplies two non-zero integers together.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<usize>) -> NonZero<usize>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > usize::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<usize>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<usize>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3usize)?;
let twenty_seven = NonZero::new(27usize)?;
let half_max = NonZero::new(usize::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<usize>
pub const fn saturating_pow(self, other: u32) -> NonZero<usize>
Raise non-zero value to an integer power.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let three = NonZero::new(3usize)?;
let twenty_seven = NonZero::new(27usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<i8>
impl NonZero<i8>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i8>::new(-1i8)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i8>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<i8>::new(0b100_0000)?;
let b = NonZero::<i8>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<i8> = _
pub const MIN: NonZero<i8> = _
The smallest value that can be represented by this non-zero
integer type,
equal to i8::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i8>::MIN.get(), i8::MIN);
1.70.0 · sourcepub const MAX: NonZero<i8> = _
pub const MAX: NonZero<i8> = _
The largest value that can be represented by this non-zero
integer type,
equal to i8::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i8>::MAX.get(), i8::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<i8>>
pub const fn checked_abs(self) -> Option<NonZero<i8>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<i8>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1i8)?;
let neg = NonZero::new(-1i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<i8>, bool)
pub const fn overflowing_abs(self) -> (NonZero<i8>, bool)
Computes the absolute value of self,
with overflow information, see
i8::overflowing_abs
.
§Example
let pos = NonZero::new(1i8)?;
let neg = NonZero::new(-1i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<i8>
pub const fn saturating_abs(self) -> NonZero<i8>
Saturating absolute value, see
i8::saturating_abs
.
§Example
let pos = NonZero::new(1i8)?;
let neg = NonZero::new(-1i8)?;
let min = NonZero::new(i8::MIN)?;
let min_plus = NonZero::new(i8::MIN + 1)?;
let max = NonZero::new(i8::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<i8>
pub const fn wrapping_abs(self) -> NonZero<i8>
Wrapping absolute value, see
i8::wrapping_abs
.
§Example
let pos = NonZero::new(1i8)?;
let neg = NonZero::new(-1i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<u8>
pub const fn unsigned_abs(self) -> NonZero<u8>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1u8)?;
let i_pos = NonZero::new(1i8)?;
let i_neg = NonZero::new(-1i8)?;
let i_min = NonZero::new(i8::MIN)?;
let u_max = NonZero::new(u8::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<i8>>
pub const fn checked_neg(self) -> Option<NonZero<i8>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<i8>::MIN
.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<i8>, bool)
pub const fn overflowing_neg(self) -> (NonZero<i8>, bool)
Negates self, overflowing if this is equal to the minimum value.
See i8::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<i8>
pub const fn saturating_neg(self) -> NonZero<i8>
Saturating negation. Computes -self
,
returning NonZero::<i8>::MAX
if self == NonZero::<i8>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
let min = NonZero::new(i8::MIN)?;
let min_plus_one = NonZero::new(i8::MIN + 1)?;
let max = NonZero::new(i8::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<i8>
pub const fn wrapping_neg(self) -> NonZero<i8>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See i8::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i8)?;
let neg_five = NonZero::new(-5i8)?;
let min = NonZero::new(i8::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<i8>) -> Option<NonZero<i8>>
pub const fn checked_mul(self, other: NonZero<i8>) -> Option<NonZero<i8>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2i8)?;
let four = NonZero::new(4i8)?;
let max = NonZero::new(i8::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<i8>) -> NonZero<i8>
pub const fn saturating_mul(self, other: NonZero<i8>) -> NonZero<i8>
Multiplies two non-zero integers together.
Return NonZero::<i8>::MAX
on overflow.
§Examples
let two = NonZero::new(2i8)?;
let four = NonZero::new(4i8)?;
let max = NonZero::new(i8::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<i8>) -> NonZero<i8>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<i8>) -> NonZero<i8>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > i8::MAX
, or self * rhs < i8::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2i8)?;
let four = NonZero::new(4i8)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<i8>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<i8>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3i8)?;
let twenty_seven = NonZero::new(27i8)?;
let half_max = NonZero::new(i8::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<i8>
pub const fn saturating_pow(self, other: u32) -> NonZero<i8>
Raise non-zero value to an integer power.
Return NonZero::<i8>::MIN
or NonZero::<i8>::MAX
on overflow.
§Examples
let three = NonZero::new(3i8)?;
let twenty_seven = NonZero::new(27i8)?;
let max = NonZero::new(i8::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<i16>
impl NonZero<i16>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i16>::new(-1i16)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i16>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<i16>::new(0b100_0000)?;
let b = NonZero::<i16>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<i16> = _
pub const MIN: NonZero<i16> = _
The smallest value that can be represented by this non-zero
integer type,
equal to i16::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i16>::MIN.get(), i16::MIN);
1.70.0 · sourcepub const MAX: NonZero<i16> = _
pub const MAX: NonZero<i16> = _
The largest value that can be represented by this non-zero
integer type,
equal to i16::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i16>::MAX.get(), i16::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<i16>>
pub const fn checked_abs(self) -> Option<NonZero<i16>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<i16>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1i16)?;
let neg = NonZero::new(-1i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<i16>, bool)
pub const fn overflowing_abs(self) -> (NonZero<i16>, bool)
Computes the absolute value of self,
with overflow information, see
i16::overflowing_abs
.
§Example
let pos = NonZero::new(1i16)?;
let neg = NonZero::new(-1i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<i16>
pub const fn saturating_abs(self) -> NonZero<i16>
Saturating absolute value, see
i16::saturating_abs
.
§Example
let pos = NonZero::new(1i16)?;
let neg = NonZero::new(-1i16)?;
let min = NonZero::new(i16::MIN)?;
let min_plus = NonZero::new(i16::MIN + 1)?;
let max = NonZero::new(i16::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<i16>
pub const fn wrapping_abs(self) -> NonZero<i16>
Wrapping absolute value, see
i16::wrapping_abs
.
§Example
let pos = NonZero::new(1i16)?;
let neg = NonZero::new(-1i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<u16>
pub const fn unsigned_abs(self) -> NonZero<u16>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1u16)?;
let i_pos = NonZero::new(1i16)?;
let i_neg = NonZero::new(-1i16)?;
let i_min = NonZero::new(i16::MIN)?;
let u_max = NonZero::new(u16::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<i16>>
pub const fn checked_neg(self) -> Option<NonZero<i16>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<i16>::MIN
.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<i16>, bool)
pub const fn overflowing_neg(self) -> (NonZero<i16>, bool)
Negates self, overflowing if this is equal to the minimum value.
See i16::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<i16>
pub const fn saturating_neg(self) -> NonZero<i16>
Saturating negation. Computes -self
,
returning NonZero::<i16>::MAX
if self == NonZero::<i16>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
let min = NonZero::new(i16::MIN)?;
let min_plus_one = NonZero::new(i16::MIN + 1)?;
let max = NonZero::new(i16::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<i16>
pub const fn wrapping_neg(self) -> NonZero<i16>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See i16::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i16)?;
let neg_five = NonZero::new(-5i16)?;
let min = NonZero::new(i16::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<i16>) -> Option<NonZero<i16>>
pub const fn checked_mul(self, other: NonZero<i16>) -> Option<NonZero<i16>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2i16)?;
let four = NonZero::new(4i16)?;
let max = NonZero::new(i16::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<i16>) -> NonZero<i16>
pub const fn saturating_mul(self, other: NonZero<i16>) -> NonZero<i16>
Multiplies two non-zero integers together.
Return NonZero::<i16>::MAX
on overflow.
§Examples
let two = NonZero::new(2i16)?;
let four = NonZero::new(4i16)?;
let max = NonZero::new(i16::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<i16>) -> NonZero<i16>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<i16>) -> NonZero<i16>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > i16::MAX
, or self * rhs < i16::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2i16)?;
let four = NonZero::new(4i16)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<i16>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<i16>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3i16)?;
let twenty_seven = NonZero::new(27i16)?;
let half_max = NonZero::new(i16::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<i16>
pub const fn saturating_pow(self, other: u32) -> NonZero<i16>
Raise non-zero value to an integer power.
Return NonZero::<i16>::MIN
or NonZero::<i16>::MAX
on overflow.
§Examples
let three = NonZero::new(3i16)?;
let twenty_seven = NonZero::new(27i16)?;
let max = NonZero::new(i16::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<i32>
impl NonZero<i32>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i32>::new(-1i32)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i32>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<i32>::new(0b100_0000)?;
let b = NonZero::<i32>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<i32> = _
pub const MIN: NonZero<i32> = _
The smallest value that can be represented by this non-zero
integer type,
equal to i32::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i32>::MIN.get(), i32::MIN);
1.70.0 · sourcepub const MAX: NonZero<i32> = _
pub const MAX: NonZero<i32> = _
The largest value that can be represented by this non-zero
integer type,
equal to i32::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i32>::MAX.get(), i32::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<i32>>
pub const fn checked_abs(self) -> Option<NonZero<i32>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<i32>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1i32)?;
let neg = NonZero::new(-1i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<i32>, bool)
pub const fn overflowing_abs(self) -> (NonZero<i32>, bool)
Computes the absolute value of self,
with overflow information, see
i32::overflowing_abs
.
§Example
let pos = NonZero::new(1i32)?;
let neg = NonZero::new(-1i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<i32>
pub const fn saturating_abs(self) -> NonZero<i32>
Saturating absolute value, see
i32::saturating_abs
.
§Example
let pos = NonZero::new(1i32)?;
let neg = NonZero::new(-1i32)?;
let min = NonZero::new(i32::MIN)?;
let min_plus = NonZero::new(i32::MIN + 1)?;
let max = NonZero::new(i32::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<i32>
pub const fn wrapping_abs(self) -> NonZero<i32>
Wrapping absolute value, see
i32::wrapping_abs
.
§Example
let pos = NonZero::new(1i32)?;
let neg = NonZero::new(-1i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<u32>
pub const fn unsigned_abs(self) -> NonZero<u32>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1u32)?;
let i_pos = NonZero::new(1i32)?;
let i_neg = NonZero::new(-1i32)?;
let i_min = NonZero::new(i32::MIN)?;
let u_max = NonZero::new(u32::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<i32>>
pub const fn checked_neg(self) -> Option<NonZero<i32>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<i32>::MIN
.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<i32>, bool)
pub const fn overflowing_neg(self) -> (NonZero<i32>, bool)
Negates self, overflowing if this is equal to the minimum value.
See i32::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<i32>
pub const fn saturating_neg(self) -> NonZero<i32>
Saturating negation. Computes -self
,
returning NonZero::<i32>::MAX
if self == NonZero::<i32>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
let min = NonZero::new(i32::MIN)?;
let min_plus_one = NonZero::new(i32::MIN + 1)?;
let max = NonZero::new(i32::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<i32>
pub const fn wrapping_neg(self) -> NonZero<i32>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See i32::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i32)?;
let neg_five = NonZero::new(-5i32)?;
let min = NonZero::new(i32::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<i32>) -> Option<NonZero<i32>>
pub const fn checked_mul(self, other: NonZero<i32>) -> Option<NonZero<i32>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2i32)?;
let four = NonZero::new(4i32)?;
let max = NonZero::new(i32::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<i32>) -> NonZero<i32>
pub const fn saturating_mul(self, other: NonZero<i32>) -> NonZero<i32>
Multiplies two non-zero integers together.
Return NonZero::<i32>::MAX
on overflow.
§Examples
let two = NonZero::new(2i32)?;
let four = NonZero::new(4i32)?;
let max = NonZero::new(i32::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<i32>) -> NonZero<i32>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<i32>) -> NonZero<i32>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > i32::MAX
, or self * rhs < i32::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2i32)?;
let four = NonZero::new(4i32)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<i32>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<i32>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3i32)?;
let twenty_seven = NonZero::new(27i32)?;
let half_max = NonZero::new(i32::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<i32>
pub const fn saturating_pow(self, other: u32) -> NonZero<i32>
Raise non-zero value to an integer power.
Return NonZero::<i32>::MIN
or NonZero::<i32>::MAX
on overflow.
§Examples
let three = NonZero::new(3i32)?;
let twenty_seven = NonZero::new(27i32)?;
let max = NonZero::new(i32::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<i64>
impl NonZero<i64>
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i64>::new(-1i64)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i64>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<i64>::new(0b100_0000)?;
let b = NonZero::<i64>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<i64> = _
pub const MIN: NonZero<i64> = _
The smallest value that can be represented by this non-zero
integer type,
equal to i64::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i64>::MIN.get(), i64::MIN);
1.70.0 · sourcepub const MAX: NonZero<i64> = _
pub const MAX: NonZero<i64> = _
The largest value that can be represented by this non-zero
integer type,
equal to i64::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i64>::MAX.get(), i64::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<i64>>
pub const fn checked_abs(self) -> Option<NonZero<i64>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<i64>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1i64)?;
let neg = NonZero::new(-1i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<i64>, bool)
pub const fn overflowing_abs(self) -> (NonZero<i64>, bool)
Computes the absolute value of self,
with overflow information, see
i64::overflowing_abs
.
§Example
let pos = NonZero::new(1i64)?;
let neg = NonZero::new(-1i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<i64>
pub const fn saturating_abs(self) -> NonZero<i64>
Saturating absolute value, see
i64::saturating_abs
.
§Example
let pos = NonZero::new(1i64)?;
let neg = NonZero::new(-1i64)?;
let min = NonZero::new(i64::MIN)?;
let min_plus = NonZero::new(i64::MIN + 1)?;
let max = NonZero::new(i64::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<i64>
pub const fn wrapping_abs(self) -> NonZero<i64>
Wrapping absolute value, see
i64::wrapping_abs
.
§Example
let pos = NonZero::new(1i64)?;
let neg = NonZero::new(-1i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<u64>
pub const fn unsigned_abs(self) -> NonZero<u64>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1u64)?;
let i_pos = NonZero::new(1i64)?;
let i_neg = NonZero::new(-1i64)?;
let i_min = NonZero::new(i64::MIN)?;
let u_max = NonZero::new(u64::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<i64>>
pub const fn checked_neg(self) -> Option<NonZero<i64>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<i64>::MIN
.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<i64>, bool)
pub const fn overflowing_neg(self) -> (NonZero<i64>, bool)
Negates self, overflowing if this is equal to the minimum value.
See i64::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<i64>
pub const fn saturating_neg(self) -> NonZero<i64>
Saturating negation. Computes -self
,
returning NonZero::<i64>::MAX
if self == NonZero::<i64>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
let min = NonZero::new(i64::MIN)?;
let min_plus_one = NonZero::new(i64::MIN + 1)?;
let max = NonZero::new(i64::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<i64>
pub const fn wrapping_neg(self) -> NonZero<i64>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See i64::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i64)?;
let neg_five = NonZero::new(-5i64)?;
let min = NonZero::new(i64::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<i64>) -> Option<NonZero<i64>>
pub const fn checked_mul(self, other: NonZero<i64>) -> Option<NonZero<i64>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2i64)?;
let four = NonZero::new(4i64)?;
let max = NonZero::new(i64::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<i64>) -> NonZero<i64>
pub const fn saturating_mul(self, other: NonZero<i64>) -> NonZero<i64>
Multiplies two non-zero integers together.
Return NonZero::<i64>::MAX
on overflow.
§Examples
let two = NonZero::new(2i64)?;
let four = NonZero::new(4i64)?;
let max = NonZero::new(i64::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<i64>) -> NonZero<i64>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<i64>) -> NonZero<i64>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > i64::MAX
, or self * rhs < i64::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2i64)?;
let four = NonZero::new(4i64)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<i64>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<i64>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3i64)?;
let twenty_seven = NonZero::new(27i64)?;
let half_max = NonZero::new(i64::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<i64>
pub const fn saturating_pow(self, other: u32) -> NonZero<i64>
Raise non-zero value to an integer power.
Return NonZero::<i64>::MIN
or NonZero::<i64>::MAX
on overflow.
§Examples
let three = NonZero::new(3i64)?;
let twenty_seven = NonZero::new(27i64)?;
let max = NonZero::new(i64::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<i128>
impl NonZero<i128>
1.67.0 · sourcepub const BITS: u32 = 128u32
pub const BITS: u32 = 128u32
The size of this non-zero integer type in bits.
This value is equal to i128::BITS
.
§Examples
assert_eq!(NonZero::<i128>::BITS, i128::BITS);
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i128>::new(-1i128)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<i128>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<i128>::new(0b100_0000)?;
let b = NonZero::<i128>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<i128> = _
pub const MIN: NonZero<i128> = _
The smallest value that can be represented by this non-zero
integer type,
equal to i128::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i128>::MIN.get(), i128::MIN);
1.70.0 · sourcepub const MAX: NonZero<i128> = _
pub const MAX: NonZero<i128> = _
The largest value that can be represented by this non-zero
integer type,
equal to i128::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<i128>::MAX.get(), i128::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<i128>>
pub const fn checked_abs(self) -> Option<NonZero<i128>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<i128>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1i128)?;
let neg = NonZero::new(-1i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<i128>, bool)
pub const fn overflowing_abs(self) -> (NonZero<i128>, bool)
Computes the absolute value of self,
with overflow information, see
i128::overflowing_abs
.
§Example
let pos = NonZero::new(1i128)?;
let neg = NonZero::new(-1i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<i128>
pub const fn saturating_abs(self) -> NonZero<i128>
Saturating absolute value, see
i128::saturating_abs
.
§Example
let pos = NonZero::new(1i128)?;
let neg = NonZero::new(-1i128)?;
let min = NonZero::new(i128::MIN)?;
let min_plus = NonZero::new(i128::MIN + 1)?;
let max = NonZero::new(i128::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<i128>
pub const fn wrapping_abs(self) -> NonZero<i128>
Wrapping absolute value, see
i128::wrapping_abs
.
§Example
let pos = NonZero::new(1i128)?;
let neg = NonZero::new(-1i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<u128>
pub const fn unsigned_abs(self) -> NonZero<u128>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1u128)?;
let i_pos = NonZero::new(1i128)?;
let i_neg = NonZero::new(-1i128)?;
let i_min = NonZero::new(i128::MIN)?;
let u_max = NonZero::new(u128::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<i128>>
pub const fn checked_neg(self) -> Option<NonZero<i128>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<i128>::MIN
.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<i128>, bool)
pub const fn overflowing_neg(self) -> (NonZero<i128>, bool)
Negates self, overflowing if this is equal to the minimum value.
See i128::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<i128>
pub const fn saturating_neg(self) -> NonZero<i128>
Saturating negation. Computes -self
,
returning NonZero::<i128>::MAX
if self == NonZero::<i128>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
let min = NonZero::new(i128::MIN)?;
let min_plus_one = NonZero::new(i128::MIN + 1)?;
let max = NonZero::new(i128::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<i128>
pub const fn wrapping_neg(self) -> NonZero<i128>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See i128::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5i128)?;
let neg_five = NonZero::new(-5i128)?;
let min = NonZero::new(i128::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<i128>) -> Option<NonZero<i128>>
pub const fn checked_mul(self, other: NonZero<i128>) -> Option<NonZero<i128>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2i128)?;
let four = NonZero::new(4i128)?;
let max = NonZero::new(i128::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<i128>) -> NonZero<i128>
pub const fn saturating_mul(self, other: NonZero<i128>) -> NonZero<i128>
Multiplies two non-zero integers together.
Return NonZero::<i128>::MAX
on overflow.
§Examples
let two = NonZero::new(2i128)?;
let four = NonZero::new(4i128)?;
let max = NonZero::new(i128::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<i128>) -> NonZero<i128>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<i128>) -> NonZero<i128>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > i128::MAX
, or self * rhs < i128::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2i128)?;
let four = NonZero::new(4i128)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<i128>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<i128>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3i128)?;
let twenty_seven = NonZero::new(27i128)?;
let half_max = NonZero::new(i128::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<i128>
pub const fn saturating_pow(self, other: u32) -> NonZero<i128>
Raise non-zero value to an integer power.
Return NonZero::<i128>::MIN
or NonZero::<i128>::MAX
on overflow.
§Examples
let three = NonZero::new(3i128)?;
let twenty_seven = NonZero::new(27i128)?;
let max = NonZero::new(i128::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
source§impl NonZero<isize>
impl NonZero<isize>
1.67.0 · sourcepub const BITS: u32 = 64u32
pub const BITS: u32 = 64u32
The size of this non-zero integer type in bits.
This value is equal to isize::BITS
.
§Examples
assert_eq!(NonZero::<isize>::BITS, isize::BITS);
1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<isize>::new(-1isize)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<isize>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
sourcepub const fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
)
pub const fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(non_zero_count_ones)]
let a = NonZero::<isize>::new(0b100_0000)?;
let b = NonZero::<isize>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
1.70.0 · sourcepub const MIN: NonZero<isize> = _
pub const MIN: NonZero<isize> = _
The smallest value that can be represented by this non-zero
integer type,
equal to isize::MIN
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<isize>::MIN.get(), isize::MIN);
1.70.0 · sourcepub const MAX: NonZero<isize> = _
pub const MAX: NonZero<isize> = _
The largest value that can be represented by this non-zero
integer type,
equal to isize::MAX
.
Note: While most integer types are defined for every whole
number between MIN
and MAX
, signed non-zero integers are
a special case. They have a “gap” at 0.
§Examples
assert_eq!(NonZero::<isize>::MAX.get(), isize::MAX);
1.64.0 (const: 1.64.0) · sourcepub const fn abs(self) -> NonZero<isize>
pub const fn abs(self) -> NonZero<isize>
Computes the absolute value of self.
See isize::abs
for documentation on overflow behaviour.
§Example
let pos = NonZero::new(1isize)?;
let neg = NonZero::new(-1isize)?;
assert_eq!(pos, pos.abs());
assert_eq!(pos, neg.abs());
1.64.0 (const: 1.64.0) · sourcepub const fn checked_abs(self) -> Option<NonZero<isize>>
pub const fn checked_abs(self) -> Option<NonZero<isize>>
Checked absolute value.
Checks for overflow and returns None
if
self == NonZero::<isize>::MIN
.
The result cannot be zero.
§Example
let pos = NonZero::new(1isize)?;
let neg = NonZero::new(-1isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!(Some(pos), neg.checked_abs());
assert_eq!(None, min.checked_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn overflowing_abs(self) -> (NonZero<isize>, bool)
pub const fn overflowing_abs(self) -> (NonZero<isize>, bool)
Computes the absolute value of self,
with overflow information, see
isize::overflowing_abs
.
§Example
let pos = NonZero::new(1isize)?;
let neg = NonZero::new(-1isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!((pos, false), pos.overflowing_abs());
assert_eq!((pos, false), neg.overflowing_abs());
assert_eq!((min, true), min.overflowing_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_abs(self) -> NonZero<isize>
pub const fn saturating_abs(self) -> NonZero<isize>
Saturating absolute value, see
isize::saturating_abs
.
§Example
let pos = NonZero::new(1isize)?;
let neg = NonZero::new(-1isize)?;
let min = NonZero::new(isize::MIN)?;
let min_plus = NonZero::new(isize::MIN + 1)?;
let max = NonZero::new(isize::MAX)?;
assert_eq!(pos, pos.saturating_abs());
assert_eq!(pos, neg.saturating_abs());
assert_eq!(max, min.saturating_abs());
assert_eq!(max, min_plus.saturating_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn wrapping_abs(self) -> NonZero<isize>
pub const fn wrapping_abs(self) -> NonZero<isize>
Wrapping absolute value, see
isize::wrapping_abs
.
§Example
let pos = NonZero::new(1isize)?;
let neg = NonZero::new(-1isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!(pos, pos.wrapping_abs());
assert_eq!(pos, neg.wrapping_abs());
assert_eq!(min, min.wrapping_abs());
assert_eq!(max, (-max).wrapping_abs());
1.64.0 (const: 1.64.0) · sourcepub const fn unsigned_abs(self) -> NonZero<usize>
pub const fn unsigned_abs(self) -> NonZero<usize>
Computes the absolute value of self without any wrapping or panicking.
§Example
let u_pos = NonZero::new(1usize)?;
let i_pos = NonZero::new(1isize)?;
let i_neg = NonZero::new(-1isize)?;
let i_min = NonZero::new(isize::MIN)?;
let u_max = NonZero::new(usize::MAX / 2 + 1)?;
assert_eq!(u_pos, i_pos.unsigned_abs());
assert_eq!(u_pos, i_neg.unsigned_abs());
assert_eq!(u_max, i_min.unsigned_abs());
1.71.0 (const: 1.71.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the
number is negative.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
assert!(pos_five.is_positive());
assert!(!neg_five.is_positive());
1.71.0 (const: 1.71.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the
number is positive.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
assert!(neg_five.is_negative());
assert!(!pos_five.is_negative());
1.71.0 (const: 1.71.0) · sourcepub const fn checked_neg(self) -> Option<NonZero<isize>>
pub const fn checked_neg(self) -> Option<NonZero<isize>>
Checked negation. Computes -self
,
returning None
if self == NonZero::<isize>::MIN
.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!(pos_five.checked_neg(), Some(neg_five));
assert_eq!(min.checked_neg(), None);
1.71.0 (const: 1.71.0) · sourcepub const fn overflowing_neg(self) -> (NonZero<isize>, bool)
pub const fn overflowing_neg(self) -> (NonZero<isize>, bool)
Negates self, overflowing if this is equal to the minimum value.
See isize::overflowing_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
assert_eq!(min.overflowing_neg(), (min, true));
1.71.0 (const: 1.71.0) · sourcepub const fn saturating_neg(self) -> NonZero<isize>
pub const fn saturating_neg(self) -> NonZero<isize>
Saturating negation. Computes -self
,
returning NonZero::<isize>::MAX
if self == NonZero::<isize>::MIN
instead of overflowing.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
let min = NonZero::new(isize::MIN)?;
let min_plus_one = NonZero::new(isize::MIN + 1)?;
let max = NonZero::new(isize::MAX)?;
assert_eq!(pos_five.saturating_neg(), neg_five);
assert_eq!(min.saturating_neg(), max);
assert_eq!(max.saturating_neg(), min_plus_one);
1.71.0 (const: 1.71.0) · sourcepub const fn wrapping_neg(self) -> NonZero<isize>
pub const fn wrapping_neg(self) -> NonZero<isize>
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
See isize::wrapping_neg
for documentation on overflow behaviour.
§Example
let pos_five = NonZero::new(5isize)?;
let neg_five = NonZero::new(-5isize)?;
let min = NonZero::new(isize::MIN)?;
assert_eq!(pos_five.wrapping_neg(), neg_five);
assert_eq!(min.wrapping_neg(), min);
1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: NonZero<isize>) -> Option<NonZero<isize>>
pub const fn checked_mul(self, other: NonZero<isize>) -> Option<NonZero<isize>>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2isize)?;
let four = NonZero::new(4isize)?;
let max = NonZero::new(isize::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: NonZero<isize>) -> NonZero<isize>
pub const fn saturating_mul(self, other: NonZero<isize>) -> NonZero<isize>
Multiplies two non-zero integers together.
Return NonZero::<isize>::MAX
on overflow.
§Examples
let two = NonZero::new(2isize)?;
let four = NonZero::new(4isize)?;
let max = NonZero::new(isize::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
sourcepub const unsafe fn unchecked_mul(self, other: NonZero<isize>) -> NonZero<isize>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<isize>) -> NonZero<isize>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > isize::MAX
, or self * rhs < isize::MIN
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2isize)?;
let four = NonZero::new(4isize)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<isize>>
pub const fn checked_pow(self, other: u32) -> Option<NonZero<isize>>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3isize)?;
let twenty_seven = NonZero::new(27isize)?;
let half_max = NonZero::new(isize::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> NonZero<isize>
pub const fn saturating_pow(self, other: u32) -> NonZero<isize>
Raise non-zero value to an integer power.
Return NonZero::<isize>::MIN
or NonZero::<isize>::MAX
on overflow.
§Examples
let three = NonZero::new(3isize)?;
let twenty_seven = NonZero::new(27isize)?;
let max = NonZero::new(isize::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
Trait Implementations§
1.45.0 · source§impl<T> BitOrAssign<T> for NonZero<T>
impl<T> BitOrAssign<T> for NonZero<T>
source§fn bitor_assign(&mut self, rhs: T)
fn bitor_assign(&mut self, rhs: T)
|=
operation. Read more1.45.0 · source§impl<T> BitOrAssign for NonZero<T>
impl<T> BitOrAssign for NonZero<T>
source§fn bitor_assign(&mut self, rhs: NonZero<T>)
fn bitor_assign(&mut self, rhs: NonZero<T>)
|=
operation. Read more1.28.0 · source§impl<T> Clone for NonZero<T>where
T: ZeroablePrimitive,
impl<T> Clone for NonZero<T>where
T: ZeroablePrimitive,
1.79.0 · source§impl DivAssign<NonZero<u128>> for u128
impl DivAssign<NonZero<u128>> for u128
source§fn div_assign(&mut self, other: NonZero<u128>)
fn div_assign(&mut self, other: NonZero<u128>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.79.0 · source§impl DivAssign<NonZero<u16>> for u16
impl DivAssign<NonZero<u16>> for u16
source§fn div_assign(&mut self, other: NonZero<u16>)
fn div_assign(&mut self, other: NonZero<u16>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.79.0 · source§impl DivAssign<NonZero<u32>> for u32
impl DivAssign<NonZero<u32>> for u32
source§fn div_assign(&mut self, other: NonZero<u32>)
fn div_assign(&mut self, other: NonZero<u32>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.79.0 · source§impl DivAssign<NonZero<u64>> for u64
impl DivAssign<NonZero<u64>> for u64
source§fn div_assign(&mut self, other: NonZero<u64>)
fn div_assign(&mut self, other: NonZero<u64>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.79.0 · source§impl DivAssign<NonZero<u8>> for u8
impl DivAssign<NonZero<u8>> for u8
source§fn div_assign(&mut self, other: NonZero<u8>)
fn div_assign(&mut self, other: NonZero<u8>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.79.0 · source§impl DivAssign<NonZero<usize>> for usize
impl DivAssign<NonZero<usize>> for usize
source§fn div_assign(&mut self, other: NonZero<usize>)
fn div_assign(&mut self, other: NonZero<usize>)
This operation rounds towards zero, truncating any fractional part of the exact result, and cannot panic.
1.31.0 · source§impl<T> From<NonZero<T>> for Twhere
T: ZeroablePrimitive,
impl<T> From<NonZero<T>> for Twhere
T: ZeroablePrimitive,
1.28.0 · source§impl<T> Ord for NonZero<T>where
T: ZeroablePrimitive + Ord,
impl<T> Ord for NonZero<T>where
T: ZeroablePrimitive + Ord,
1.28.0 · source§impl<T> PartialEq for NonZero<T>where
T: ZeroablePrimitive + PartialEq,
impl<T> PartialEq for NonZero<T>where
T: ZeroablePrimitive + PartialEq,
1.28.0 · source§impl<T> PartialOrd for NonZero<T>where
T: ZeroablePrimitive + PartialOrd,
impl<T> PartialOrd for NonZero<T>where
T: ZeroablePrimitive + PartialOrd,
source§fn le(&self, other: &NonZero<T>) -> bool
fn le(&self, other: &NonZero<T>) -> bool
self
and other
) and is used by the <=
operator. Read more1.79.0 · source§impl RemAssign<NonZero<u128>> for u128
impl RemAssign<NonZero<u128>> for u128
source§fn rem_assign(&mut self, other: NonZero<u128>)
fn rem_assign(&mut self, other: NonZero<u128>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
1.79.0 · source§impl RemAssign<NonZero<u16>> for u16
impl RemAssign<NonZero<u16>> for u16
source§fn rem_assign(&mut self, other: NonZero<u16>)
fn rem_assign(&mut self, other: NonZero<u16>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
1.79.0 · source§impl RemAssign<NonZero<u32>> for u32
impl RemAssign<NonZero<u32>> for u32
source§fn rem_assign(&mut self, other: NonZero<u32>)
fn rem_assign(&mut self, other: NonZero<u32>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
1.79.0 · source§impl RemAssign<NonZero<u64>> for u64
impl RemAssign<NonZero<u64>> for u64
source§fn rem_assign(&mut self, other: NonZero<u64>)
fn rem_assign(&mut self, other: NonZero<u64>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
1.79.0 · source§impl RemAssign<NonZero<u8>> for u8
impl RemAssign<NonZero<u8>> for u8
source§fn rem_assign(&mut self, other: NonZero<u8>)
fn rem_assign(&mut self, other: NonZero<u8>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
1.79.0 · source§impl RemAssign<NonZero<usize>> for usize
impl RemAssign<NonZero<usize>> for usize
source§fn rem_assign(&mut self, other: NonZero<usize>)
fn rem_assign(&mut self, other: NonZero<usize>)
This operation satisfies n % d == n - (n / d) * d
, and cannot panic.
impl<T> Copy for NonZero<T>where
T: ZeroablePrimitive,
impl<T> Eq for NonZero<T>where
T: ZeroablePrimitive + Eq,
impl<T> Freeze for NonZero<T>where
T: ZeroablePrimitive + Freeze,
impl<T> RefUnwindSafe for NonZero<T>where
T: ZeroablePrimitive + RefUnwindSafe,
impl<T> Send for NonZero<T>where
T: ZeroablePrimitive + Send,
impl<T> StructuralPartialEq for NonZero<T>where
T: ZeroablePrimitive + StructuralPartialEq,
impl<T> Sync for NonZero<T>where
T: ZeroablePrimitive + Sync,
impl<T> Unpin for NonZero<T>where
T: ZeroablePrimitive + Unpin,
impl<T> UnwindSafe for NonZero<T>where
T: ZeroablePrimitive + UnwindSafe,
Auto Trait Implementations§
impl<T> !Freeze for NonZero<T>
impl<T> !RefUnwindSafe for NonZero<T>
impl<T> !Send for NonZero<T>
impl<T> !Sync for NonZero<T>
impl<T> !Unpin for NonZero<T>
impl<T> !UnwindSafe for NonZero<T>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> MakeSized for Twhere
T: ?Sized,
impl<T> MakeSized for Twhere
T: ?Sized,
source§fn make_sized(&self) -> Box<T>
fn make_sized(&self) -> Box<T>
logic ⚠
ensures
*result == *self