creusot_contracts/ghost.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
//! Definitions for ghost code
//!
//! Ghost code is code that will be erased during the normal compilation of the program.
//! To use ghost code in creusot, you must use the [`ghost!`] macro:
//!
//! ```
//! # use creusot_contracts::*;
//! let x: Ghost<i32> = ghost!(1);
//! ghost! {
//! let y: i32 = *x;
//! assert!(y == 1);
//! };
//! ```
//!
//! There are restrictions on the values that can enter/exit a `ghost!` block: see
//! [`Ghost`] and [`ghost!`] for more details.
#[cfg(creusot)]
use crate::resolve::structural_resolve;
use crate::{
std::ops::{Deref, DerefMut},
*,
};
/// A type that can be used in [`ghost!`] context.
///
/// This type may be used to make more complicated proofs possible. In particular, some
/// proof may need a notion of non-duplicable token to carry around.
///
/// Conceptually, a `Ghost<T>` is an object of type `T` that resides in a special "ghost"
/// heap. This heap is inaccessible from normal code, and `Ghost` values cannot be used
/// to influence the behavior of normal code.
///
/// This box can be accessed in a [`ghost!`] block:
/// ```compile_fail
/// let b: Ghost<i32> = Ghost::new(1);
/// ghost! {
/// let value: i32 = b.into_inner();
/// // use value here
/// }
/// let value: i32 = b.into_inner(); // compile error !
/// ```
#[cfg_attr(creusot, rustc_diagnostic_item = "ghost_ty")]
pub struct Ghost<T>(#[cfg(creusot)] T, #[cfg(not(creusot))] std::marker::PhantomData<T>);
impl<T: Clone> Clone for Ghost<T> {
#[ensures(result == *self)]
fn clone(&self) -> Self {
#[cfg(creusot)]
{
Self(self.0.clone())
}
#[cfg(not(creusot))]
{
Self(std::marker::PhantomData)
}
}
}
impl<T> Deref for Ghost<T> {
type Target = T;
/// This function can only be called in `ghost!` context
#[cfg_attr(creusot, rustc_diagnostic_item = "ghost_deref")]
#[pure]
#[ensures((*self).inner_logic() == *result)]
fn deref(&self) -> &Self::Target {
#[cfg(creusot)]
{
&self.0
}
#[cfg(not(creusot))]
{
panic!()
}
}
}
impl<T> DerefMut for Ghost<T> {
/// This function can only be called in `ghost!` context
#[cfg_attr(creusot, rustc_diagnostic_item = "ghost_deref_mut")]
#[pure]
#[ensures(*result == (*self).inner_logic())]
#[ensures(^result == (^self).inner_logic())]
fn deref_mut(&mut self) -> &mut Self::Target {
#[cfg(creusot)]
{
&mut self.0
}
#[cfg(not(creusot))]
{
panic!()
}
}
}
impl<T: View> View for Ghost<T> {
type ViewTy = T::ViewTy;
#[logic]
#[open]
fn view(self) -> Self::ViewTy {
(*self).view()
}
}
impl<T> Invariant for Ghost<T> {
#[predicate(prophetic)]
#[open]
fn invariant(self) -> bool {
inv(self.inner_logic())
}
}
impl<T> Resolve for Ghost<T> {
#[open]
#[predicate(prophetic)]
fn resolve(self) -> bool {
resolve(&self.inner_logic())
}
#[logic(prophetic)]
#[open(self)]
#[requires(structural_resolve(self))]
#[ensures((*self).resolve())]
fn resolve_coherence(&self) {}
}
impl<T> Ghost<T> {
/// Transforms a `&Ghost<T>` into `Ghost<&T>`.
#[pure]
#[ensures(**result == **self)]
pub fn borrow(&self) -> Ghost<&T> {
#[cfg(creusot)]
{
Ghost(&self.0)
}
#[cfg(not(creusot))]
{
Ghost(std::marker::PhantomData)
}
}
/// Transforms a `&mut Ghost<T>` into a `Ghost<&mut T>`.
#[pure]
#[ensures(*result.inner_logic() == (*self).inner_logic())]
#[ensures(^result.inner_logic() == (^self).inner_logic())]
pub fn borrow_mut(&mut self) -> Ghost<&mut T> {
#[cfg(creusot)]
{
Ghost(&mut self.0)
}
#[cfg(not(creusot))]
{
Ghost(std::marker::PhantomData)
}
}
/// Conjures a `Ghost<T>` out of thin air.
///
/// This would be unsound in verified code, hence the `false` precondition.
/// This function is nevertheless useful to create a `Ghost` in "trusted"
/// contexts, when axiomatizing an API that is believed to be sound for
/// external reasons.
#[pure]
#[requires(false)]
pub fn conjure() -> Self {
#[cfg(creusot)]
{
panic!()
}
#[cfg(not(creusot))]
{
Ghost(std::marker::PhantomData)
}
}
// Internal function to easily create a `Ghost` in non-creusot mode.
#[cfg(not(creusot))]
#[doc(hidden)]
pub fn from_fn(_: impl FnOnce() -> T) -> Self {
Ghost(std::marker::PhantomData)
}
}
impl<T> Ghost<T> {
/// Creates a new ghost variable.
///
/// This function can only be called in `ghost!` code.
#[pure]
#[ensures(*result == x)]
#[cfg_attr(creusot, rustc_diagnostic_item = "ghost_new")]
pub fn new(x: T) -> Self {
#[cfg(creusot)]
{
Self(x)
}
#[cfg(not(creusot))]
{
let _ = x;
Self(std::marker::PhantomData)
}
}
#[logic]
#[open(self)]
#[ensures(*result == x)]
pub fn new_logic(x: T) -> Self {
Self(x)
}
/// Returns the inner value of the `Ghost`.
///
/// This function can only be called in `ghost!` context.
#[pure]
#[ensures(result == *self)]
#[cfg_attr(creusot, rustc_diagnostic_item = "ghost_into_inner")]
pub fn into_inner(self) -> T {
#[cfg(creusot)]
{
self.0
}
#[cfg(not(creusot))]
{
panic!()
}
}
/// Returns the inner value of the `Ghost`.
///
/// You should prefer the dereference operator `*` instead.
#[logic]
#[open(self)]
#[rustc_diagnostic_item = "ghost_inner_logic"]
pub fn inner_logic(self) -> T {
self.0
}
}
impl<T, U> Ghost<(T, U)> {
#[pure]
#[trusted]
#[ensures(*self == (*result.0, *result.1))]
pub fn split(self) -> (Ghost<T>, Ghost<U>) {
(Ghost::conjure(), Ghost::conjure())
}
}