creusot_contracts/logic/
fset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
use crate::{logic::Mapping, *};

/// A finite set type usable in pearlite and `ghost!` blocks.
///
/// If you need an infinite set, see [`Set`](super::Set).
///
/// # Ghost
///
/// Since [`std::collections::HashSet`](::std::collections::HashSet) and
/// [`std::collections::BTreeSet`](::std::collections::BTreeSet) have finite
/// capacity, this could cause some issues in ghost code:
/// ```rust,creusot,compile_fail
/// ghost! {
///     let mut set = HashSet::new();
///     for _ in 0..=usize::MAX as u128 + 1 {
///         set.insert(0); // cannot fail, since we are in a ghost block
///     }
///     proof_assert!(set.len() <= usize::MAX@); // by definition
///     proof_assert!(set.len() > usize::MAX@); // uh-oh
/// }
/// ```
///
/// This type is designed for this use-case, with no restriction on the capacity.
#[trusted]
#[cfg_attr(creusot, creusot::builtins = "set.Fset.fset")]
pub struct FSet<T: ?Sized>(std::marker::PhantomData<T>);

impl<T: ?Sized> FSet<T> {
    /// The empty set.
    #[cfg(creusot)]
    #[trusted]
    #[creusot::builtins = "set.Fset.empty"]
    pub const EMPTY: Self = { FSet(std::marker::PhantomData) };

    /// Returns the empty set.
    #[logic]
    #[open]
    pub fn empty() -> Self {
        Self::EMPTY
    }

    /// Returns `true` if `e` is in the set.
    #[open]
    #[predicate]
    #[creusot::why3_attr = "inline:trivial"]
    pub fn contains(self, e: T) -> bool {
        Self::mem(e, self)
    }

    /// [`Self::contains`], but with the order of arguments flipped.
    ///
    /// This is how the function is defined in why3.
    #[doc(hidden)]
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.mem"]
    pub fn mem(_: T, _: Self) -> bool {
        dead
    }

    /// Returns a new set, where `e` has been added if it was not present.
    #[open]
    #[logic]
    #[creusot::why3_attr = "inline:trivial"]
    pub fn insert(self, e: T) -> Self {
        Self::add(e, self)
    }

    /// [`Self::insert`], but with the order of arguments flipped.
    ///
    /// This is how the function is defined in why3.
    #[doc(hidden)]
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.add"]
    pub fn add(_: T, _: Self) -> Self {
        dead
    }

    /// Returns `true` if the set contains no elements.
    #[trusted]
    #[predicate]
    #[creusot::builtins = "set.Fset.is_empty"]
    pub fn is_empty(self) -> bool {
        dead
    }

    /// Returns a new set, where `e` is no longer present.
    #[open]
    #[logic]
    #[creusot::why3_attr = "inline:trivial"]
    pub fn remove(self, e: T) -> Self {
        Self::rem(e, self)
    }

    /// [`Self::remove`], but with the order of arguments flipped.
    ///
    /// This is how the function is defined in why3.
    #[doc(hidden)]
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.remove"]
    pub fn rem(_: T, _: Self) -> Self {
        dead
    }

    /// Returns a new set, which is the union of `self` and `other`.
    ///
    /// An element is in the result if it is in `self` _or_ if it is in `other`.
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.union"]
    pub fn union(self, other: Self) -> Self {
        let _ = other;
        dead
    }

    /// Returns a new set, which is the union of `self` and `other`.
    ///
    /// An element is in the result if it is in `self` _or_ if it is in `other`.
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.inter"]
    pub fn intersection(self, other: Self) -> Self {
        let _ = other;
        dead
    }

    /// Returns a new set, which is the difference of `self` with `other`.
    ///
    /// An element is in the result if and only if it is in `self` but not in `other`.
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.diff"]
    pub fn difference(self, other: Self) -> Self {
        let _ = other;
        dead
    }

    /// Returns `true` if every element of `self` is in `other`.
    #[trusted]
    #[predicate]
    #[creusot::builtins = "set.Fset.subset"]
    pub fn is_subset(self, other: Self) -> bool {
        let _ = other;
        dead
    }

    /// Returns `true` if every element of `other` is in `self`.
    #[open]
    #[predicate]
    #[creusot::why3_attr = "inline:trivial"]
    pub fn is_superset(self, other: Self) -> bool {
        Self::is_subset(other, self)
    }

    /// Returns `true` if `self` and `other` are disjoint.
    #[trusted]
    #[predicate]
    #[creusot::builtins = "set.Fset.disjoint"]
    pub fn disjoint(self, other: Self) -> bool {
        let _ = other;
        dead
    }

    /// Returns the number of elements in the set, also called its length.
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.cardinal"]
    pub fn len(self) -> Int {
        dead
    }

    /// Get an arbitrary element of the set.
    ///
    /// # Returns
    ///
    /// - If the set is nonempty, the result is guaranteed to be in the set
    /// - If the set is empty, the result is unspecified
    #[trusted]
    #[logic]
    #[creusot::builtins = "set.Fset.pick"]
    pub fn peek(self) -> T
    where
        T: Sized,
    {
        dead
    }

    /// Extensional equality
    ///
    /// Returns `true` if `self` and `other` contain exactly the same elements.
    ///
    /// This is in fact equivalent with normal equality.
    #[open]
    #[predicate]
    #[ensures(result ==> self == other)]
    pub fn ext_eq(self, other: Self) -> bool
    where
        T: Sized,
    {
        pearlite! {
            forall <e: T> self.contains(e) == other.contains(e)
        }
    }
}

impl<T> FSet<T> {
    /// Returns the set containing only `x`.
    #[logic]
    #[open]
    #[ensures(forall<y: T> result.contains(y) == (x == y))]
    pub fn singleton(x: T) -> Self {
        FSet::EMPTY.insert(x)
    }

    /// Returns the union of sets `f(t)` over all `t: T`.
    #[logic]
    #[open]
    #[ensures(forall<y: U> result.contains(y) == exists<x: T> self.contains(x) && f.get(x).contains(y))]
    #[variant(self.len())]
    pub fn unions<U>(self, f: Mapping<T, FSet<U>>) -> FSet<U> {
        if self.len() == 0 {
            FSet::EMPTY
        } else {
            let x = self.peek();
            f.get(x).union(self.remove(x).unions(f))
        }
    }

    /// Flipped `map`.
    #[logic]
    #[trusted]
    #[creusot::builtins = "set.Fset.map"]
    pub fn fmap<U>(_: Mapping<T, U>, _: Self) -> FSet<U> {
        dead
    }

    /// Returns the image of a set by a function.
    #[logic]
    #[open]
    pub fn map<U>(self, f: Mapping<T, U>) -> FSet<U> {
        FSet::fmap(f, self)
    }

    /// Returns the subset of elements of `self` which satisfy the predicate `f`.
    #[logic]
    #[trusted]
    #[creusot::builtins = "set.Fset.filter"]
    pub fn filter(self, f: Mapping<T, bool>) -> Self {
        let _ = f;
        dead
    }

    /// Returns the set of sequences whose head is in `s` and whose tail is in `ss`.
    #[logic]
    #[trusted] // TODO: remove. Needs support for closures in logic functions with constraints
    #[open]
    #[ensures(forall<xs: Seq<T>> result.contains(xs) == (0 < xs.len() && s.contains(xs[0]) && ss.contains(xs.tail())))]
    pub fn cons(s: FSet<T>, ss: FSet<Seq<T>>) -> FSet<Seq<T>> {
        s.unions(|x| ss.map(|xs: Seq<_>| xs.push_front(x)))
    }

    /// Returns the set of concatenations of a sequence in `s` and a sequence in `t`.
    #[logic]
    #[trusted] // TODO: remove. Needs support for closures in logic functions with constraints
    #[open]
    #[ensures(forall<xs: Seq<T>> result.contains(xs) == (exists<ys: Seq<T>, zs: Seq<T>> s.contains(ys) && t.contains(zs) && xs == ys.concat(zs)))]
    pub fn concat(s: FSet<Seq<T>>, t: FSet<Seq<T>>) -> FSet<Seq<T>> {
        s.unions(|ys: Seq<_>| t.map(|zs| ys.concat(zs)))
    }

    /// Returns the set of sequences of length `n` whose elements are in `self`.
    #[open]
    #[logic]
    #[requires(n >= 0)]
    #[ensures(forall<xs: Seq<T>> result.contains(xs) == (xs.len() == n && forall<x: T> xs.contains(x) ==> self.contains(x)))]
    #[variant(n)]
    pub fn replicate(self, n: Int) -> FSet<Seq<T>> {
        pearlite! {
            if n == 0 {
                proof_assert! { forall<xs: Seq<T>> xs.len() == 0 ==> xs == Seq::EMPTY };
                FSet::singleton(Seq::EMPTY)
            } else {
                proof_assert! { forall<xs: Seq<T>, i: Int> 0 < i && i < xs.len() ==> xs[i] == xs.tail()[i-1] };
                FSet::cons(self, self.replicate(n - 1))
            }
        }
    }

    /// Returns the set of sequences of length at most `n` whose elements are in `self`.
    #[open]
    #[logic]
    #[requires(n >= 0)]
    #[ensures(forall<xs: Seq<T>> result.contains(xs) == (xs.len() <= n && forall<x: T> xs.contains(x) ==> self.contains(x)))]
    #[variant(n)]
    pub fn replicate_up_to(self, n: Int) -> FSet<Seq<T>> {
        pearlite! {
            if n == 0 {
                proof_assert! { forall<xs: Seq<T>> xs.len() == 0 ==> xs == Seq::EMPTY };
                FSet::singleton(Seq::EMPTY)
            } else {
                self.replicate_up_to(n - 1).union(self.replicate(n))
            }
        }
    }
}

impl FSet<Int> {
    /// Return the interval of integers in `[i, j)`.
    #[logic]
    #[open]
    #[trusted]
    #[creusot::builtins = "set.FsetInt.interval"]
    pub fn interval(i: Int, j: Int) -> FSet<Int> {
        let _ = (i, j);
        dead
    }
}

/// Ghost definitions
impl<T: ?Sized> FSet<T> {
    /// Create a new, empty set on the ghost heap.
    #[trusted]
    #[pure]
    #[ensures(result.is_empty())]
    #[allow(unreachable_code)]
    pub fn new() -> Ghost<Self> {
        Ghost::conjure()
    }

    /// Returns the number of elements in the set.
    ///
    /// If you need to get the length in pearlite, consider using [`len`](Self::len).
    ///
    /// # Example
    /// ```rust,creusot
    /// use creusot_contracts::{logic::FSet, *};
    ///
    /// let mut set = FSet::new();
    /// ghost! {
    ///     let len1 = set.len_ghost();
    ///     set.insert_ghost(1);
    ///     set.insert_ghost(2);
    ///     set.insert_ghost(1);
    ///     let len2 = set.len_ghost();
    ///     proof_assert!(len1 == 0);
    ///     proof_assert!(len2 == 2);
    /// };
    /// ```
    #[trusted]
    #[pure]
    #[ensures(result == self.len())]
    pub fn len_ghost(&self) -> Int {
        panic!()
    }

    /// Returns true if the set contains the specified value.
    ///
    /// # Example
    /// ```rust,creusot
    /// use creusot_contracts::{logic::FSet, *};
    ///
    /// let mut set = FSet::new();
    /// ghost! {
    ///     set.insert_ghost(1);
    ///     let (b1, b2) = (set.contains_ghost(&1), set.contains_ghost(&2));
    ///     proof_assert!(b1);
    ///     proof_assert!(!b2);
    /// };
    /// ```
    #[pure]
    #[trusted]
    #[ensures(result == self.contains(*value))]
    pub fn contains_ghost(&self, value: &T) -> bool {
        let _ = value;
        panic!()
    }

    /// Adds a value to the set.
    ///
    /// Returns whether the value was newly inserted. That is:
    /// - If the set did not previously contain this value, `true` is returned.
    /// - If the set already contained this value, `false` is returned, and the set is
    ///   not modified: original value is not replaced, and the value passed as argument
    ///   is dropped.
    ///
    /// # Example
    /// ```rust,creusot
    /// use creusot_contracts::{logic::FSet, *};
    ///
    /// let mut set = FSet::new();
    /// ghost! {
    ///     let res1 = set.insert_ghost(42);
    ///     proof_assert!(res1);
    ///     proof_assert!(set.contains(42i32));
    ///
    ///     let res2 = set.insert_ghost(41);
    ///     let res3 = set.insert_ghost(42);
    ///     proof_assert!(res2);
    ///     proof_assert!(!res3);
    ///     proof_assert!(set.len() == 2);
    /// };
    /// ```
    #[trusted]
    #[pure]
    #[ensures(^self == (*self).insert(value))]
    #[ensures(result == !(*self).contains(value))]
    pub fn insert_ghost(&mut self, value: T) -> bool
    where
        T: Sized,
    {
        let _ = value;
        panic!()
    }

    /// Same as [`Self::insert_ghost`], but for unsized values.
    #[trusted]
    #[pure]
    #[ensures(^self == (*self).insert(*value))]
    #[ensures(result == !(*self).contains(*value))]
    pub fn insert_ghost_unsized(&mut self, value: Box<T>) -> bool {
        let _ = value;
        panic!()
    }

    /// Removes a value from the set. Returns whether the value was present in the set.
    ///
    /// # Example
    /// ```rust,creusot
    /// use creusot_contracts::{logic::FSet, *};
    ///
    /// let mut set = FSet::new();
    /// let res = ghost! {
    ///     set.insert_ghost(1);
    ///     let res1 = set.remove_ghost(&1);
    ///     let res2 = set.remove_ghost(&1);
    ///     proof_assert!(res1 && !res2);
    /// };
    /// ```
    #[trusted]
    #[pure]
    #[ensures(^self == (*self).remove(*value))]
    #[ensures(result == (*self).contains(*value))]
    pub fn remove_ghost(&mut self, value: &T) -> bool {
        let _ = value;
        panic!()
    }
}

impl<T: Clone + Copy> Clone for FSet<T> {
    #[pure]
    #[ensures(result == *self)]
    #[trusted]
    fn clone(&self) -> Self {
        *self
    }
}

// Having `Copy` guarantees that the operation is pure, even if we decide to change the definition of `Clone`.
impl<T: Clone + Copy> Copy for FSet<T> {}

impl<T: ?Sized> Invariant for FSet<T> {
    #[predicate(prophetic)]
    #[open]
    #[creusot::trusted_ignore_structural_inv]
    #[creusot::trusted_is_tyinv_trivial_if_param_trivial]
    fn invariant(self) -> bool {
        pearlite! { forall<x: &T> self.contains(*x) ==> inv(*x) }
    }
}

// Properties

/// Distributivity of `unions` over `union`.
#[logic]
#[open]
#[ensures(forall<s1: FSet<T>, s2: FSet<T>, f: Mapping<T, FSet<U>>> s1.union(s2).unions(f) == s1.unions(f).union(s2.unions(f)))]
#[ensures(forall<s: FSet<T>, f: Mapping<T, FSet<U>>, g: Mapping<T, FSet<U>>>
    s.unions(|x| f.get(x).union(g.get(x))) == s.unions(f).union(s.unions(g)))]
pub fn unions_union<T, U>() {}

/// Distributivity of `map` over `union`.
#[logic]
#[open]
#[ensures(forall<s: FSet<T>, t: FSet<T>, f: Mapping<T, U>> s.union(t).map(f) == s.map(f).union(t.map(f)))]
pub fn map_union<T, U>() {}

/// Distributivity of `concat` over `union`.
#[logic]
#[open]
#[ensures(forall<s1: FSet<Seq<T>>, s2: FSet<Seq<T>>, t: FSet<Seq<T>>>
    FSet::concat(s1.union(s2), t) == FSet::concat(s1, t).union(FSet::concat(s2, t)))]
#[ensures(forall<s: FSet<Seq<T>>, t1: FSet<Seq<T>>, t2: FSet<Seq<T>>>
    FSet::concat(s, t1.union(t2)) == FSet::concat(s, t1).union(FSet::concat(s, t2)))]
pub fn concat_union<T>() {}

/// Distributivity of `cons` over `union`.
#[logic]
#[open]
#[ensures(forall<s: FSet<T>, t: FSet<Seq<T>>, u: FSet<Seq<T>>> FSet::concat(FSet::cons(s, t), u) == FSet::cons(s, FSet::concat(t, u)))]
pub fn cons_concat<T>() {
    proof_assert! { forall<x: T, xs: Seq<T>, ys: Seq<T>> xs.push_front(x).concat(ys) == xs.concat(ys).push_front(x) };
    proof_assert! { forall<x: T, ys: Seq<T>> ys.push_front(x).tail() == ys };
    proof_assert! { forall<ys: Seq<T>> 0 < ys.len() ==> ys == ys.tail().push_front(ys[0]) };
}

/// Distributivity of `replicate` over `union`.
#[logic]
#[open]
#[requires(0 <= n && 0 <= m)]
#[ensures(s.replicate(n + m) == FSet::concat(s.replicate(n), s.replicate(m)))]
#[variant(n)]
pub fn concat_replicate<T>(n: Int, m: Int, s: FSet<T>) {
    pearlite! {
        if n == 0 {
            concat_empty(s.replicate(m));
        } else {
            cons_concat::<T>();
            concat_replicate(n - 1, m, s);
        }
    }
}

/// The neutral element of `FSet::concat` is `FSet::singleton(Seq::EMPTY)`.
#[logic]
#[open]
#[ensures(FSet::concat(FSet::singleton(Seq::EMPTY), s) == s)]
#[ensures(FSet::concat(s, FSet::singleton(Seq::EMPTY)) == s)]
pub fn concat_empty<T>(s: FSet<Seq<T>>) {
    proof_assert! { forall<xs: Seq<T>> xs.concat(Seq::EMPTY) == xs };
    proof_assert! { forall<xs: Seq<T>> Seq::EMPTY.concat(xs) == xs };
}

/// An equation relating `s.replicate_up_to(m)` and `s.replicate_up_to(n)`.
#[logic]
#[open]
#[requires(0 <= n && n < m)]
#[ensures(s.replicate_up_to(m) == s.replicate_up_to(n).union(
    FSet::concat(s.replicate(n + 1), s.replicate_up_to(m - n - 1))))]
#[variant(m)]
pub fn concat_replicate_up_to<T>(n: Int, m: Int, s: FSet<T>) {
    pearlite! {
        if n + 1 == m {
            concat_empty(s.replicate(n + 1));
        } else {
            concat_union::<T>();
            concat_replicate(n, m - n - 1, s);
            concat_replicate_up_to(n, m - 1, s);
        }
    }
}