creusot_contracts/logic/fset.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
use crate::{logic::Mapping, *};
/// A finite set type usable in pearlite and `ghost!` blocks.
///
/// If you need an infinite set, see [`Set`](super::Set).
///
/// # Ghost
///
/// Since [`std::collections::HashSet`](::std::collections::HashSet) and
/// [`std::collections::BTreeSet`](::std::collections::BTreeSet) have finite
/// capacity, this could cause some issues in ghost code:
/// ```rust,creusot,compile_fail
/// ghost! {
/// let mut set = HashSet::new();
/// for _ in 0..=usize::MAX as u128 + 1 {
/// set.insert(0); // cannot fail, since we are in a ghost block
/// }
/// proof_assert!(set.len() <= usize::MAX@); // by definition
/// proof_assert!(set.len() > usize::MAX@); // uh-oh
/// }
/// ```
///
/// This type is designed for this use-case, with no restriction on the capacity.
#[trusted]
#[cfg_attr(creusot, creusot::builtins = "set.Fset.fset")]
pub struct FSet<T: ?Sized>(std::marker::PhantomData<T>);
impl<T: ?Sized> FSet<T> {
/// The empty set.
#[cfg(creusot)]
#[trusted]
#[creusot::builtins = "set.Fset.empty"]
pub const EMPTY: Self = { FSet(std::marker::PhantomData) };
/// Returns the empty set.
#[logic]
#[open]
pub fn empty() -> Self {
Self::EMPTY
}
/// Returns `true` if `e` is in the set.
#[open]
#[predicate]
#[creusot::why3_attr = "inline:trivial"]
pub fn contains(self, e: T) -> bool {
Self::mem(e, self)
}
/// [`Self::contains`], but with the order of arguments flipped.
///
/// This is how the function is defined in why3.
#[doc(hidden)]
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.mem"]
pub fn mem(_: T, _: Self) -> bool {
dead
}
/// Returns a new set, where `e` has been added if it was not present.
#[open]
#[logic]
#[creusot::why3_attr = "inline:trivial"]
pub fn insert(self, e: T) -> Self {
Self::add(e, self)
}
/// [`Self::insert`], but with the order of arguments flipped.
///
/// This is how the function is defined in why3.
#[doc(hidden)]
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.add"]
pub fn add(_: T, _: Self) -> Self {
dead
}
/// Returns `true` if the set contains no elements.
#[trusted]
#[predicate]
#[creusot::builtins = "set.Fset.is_empty"]
pub fn is_empty(self) -> bool {
dead
}
/// Returns a new set, where `e` is no longer present.
#[open]
#[logic]
#[creusot::why3_attr = "inline:trivial"]
pub fn remove(self, e: T) -> Self {
Self::rem(e, self)
}
/// [`Self::remove`], but with the order of arguments flipped.
///
/// This is how the function is defined in why3.
#[doc(hidden)]
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.remove"]
pub fn rem(_: T, _: Self) -> Self {
dead
}
/// Returns a new set, which is the union of `self` and `other`.
///
/// An element is in the result if it is in `self` _or_ if it is in `other`.
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.union"]
pub fn union(self, other: Self) -> Self {
let _ = other;
dead
}
/// Returns a new set, which is the union of `self` and `other`.
///
/// An element is in the result if it is in `self` _or_ if it is in `other`.
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.inter"]
pub fn intersection(self, other: Self) -> Self {
let _ = other;
dead
}
/// Returns a new set, which is the difference of `self` with `other`.
///
/// An element is in the result if and only if it is in `self` but not in `other`.
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.diff"]
pub fn difference(self, other: Self) -> Self {
let _ = other;
dead
}
/// Returns `true` if every element of `self` is in `other`.
#[trusted]
#[predicate]
#[creusot::builtins = "set.Fset.subset"]
pub fn is_subset(self, other: Self) -> bool {
let _ = other;
dead
}
/// Returns `true` if every element of `other` is in `self`.
#[open]
#[predicate]
#[creusot::why3_attr = "inline:trivial"]
pub fn is_superset(self, other: Self) -> bool {
Self::is_subset(other, self)
}
/// Returns `true` if `self` and `other` are disjoint.
#[trusted]
#[predicate]
#[creusot::builtins = "set.Fset.disjoint"]
pub fn disjoint(self, other: Self) -> bool {
let _ = other;
dead
}
/// Returns the number of elements in the set, also called its length.
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.cardinal"]
pub fn len(self) -> Int {
dead
}
/// Get an arbitrary element of the set.
///
/// # Returns
///
/// - If the set is nonempty, the result is guaranteed to be in the set
/// - If the set is empty, the result is unspecified
#[trusted]
#[logic]
#[creusot::builtins = "set.Fset.pick"]
pub fn peek(self) -> T
where
T: Sized,
{
dead
}
/// Extensional equality
///
/// Returns `true` if `self` and `other` contain exactly the same elements.
///
/// This is in fact equivalent with normal equality.
#[open]
#[predicate]
#[ensures(result ==> self == other)]
pub fn ext_eq(self, other: Self) -> bool
where
T: Sized,
{
pearlite! {
forall <e: T> self.contains(e) == other.contains(e)
}
}
}
impl<T> FSet<T> {
/// Returns the set containing only `x`.
#[logic]
#[open]
#[ensures(forall<y: T> result.contains(y) == (x == y))]
pub fn singleton(x: T) -> Self {
FSet::EMPTY.insert(x)
}
/// Returns the union of sets `f(t)` over all `t: T`.
#[logic]
#[open]
#[ensures(forall<y: U> result.contains(y) == exists<x: T> self.contains(x) && f.get(x).contains(y))]
#[variant(self.len())]
pub fn unions<U>(self, f: Mapping<T, FSet<U>>) -> FSet<U> {
if self.len() == 0 {
FSet::EMPTY
} else {
let x = self.peek();
f.get(x).union(self.remove(x).unions(f))
}
}
/// Flipped `map`.
#[logic]
#[trusted]
#[creusot::builtins = "set.Fset.map"]
pub fn fmap<U>(_: Mapping<T, U>, _: Self) -> FSet<U> {
dead
}
/// Returns the image of a set by a function.
#[logic]
#[open]
pub fn map<U>(self, f: Mapping<T, U>) -> FSet<U> {
FSet::fmap(f, self)
}
/// Returns the subset of elements of `self` which satisfy the predicate `f`.
#[logic]
#[trusted]
#[creusot::builtins = "set.Fset.filter"]
pub fn filter(self, f: Mapping<T, bool>) -> Self {
let _ = f;
dead
}
/// Returns the set of sequences whose head is in `s` and whose tail is in `ss`.
#[logic]
#[trusted] // TODO: remove. Needs support for closures in logic functions with constraints
#[open]
#[ensures(forall<xs: Seq<T>> result.contains(xs) == (0 < xs.len() && s.contains(xs[0]) && ss.contains(xs.tail())))]
pub fn cons(s: FSet<T>, ss: FSet<Seq<T>>) -> FSet<Seq<T>> {
s.unions(|x| ss.map(|xs: Seq<_>| xs.push_front(x)))
}
/// Returns the set of concatenations of a sequence in `s` and a sequence in `t`.
#[logic]
#[trusted] // TODO: remove. Needs support for closures in logic functions with constraints
#[open]
#[ensures(forall<xs: Seq<T>> result.contains(xs) == (exists<ys: Seq<T>, zs: Seq<T>> s.contains(ys) && t.contains(zs) && xs == ys.concat(zs)))]
pub fn concat(s: FSet<Seq<T>>, t: FSet<Seq<T>>) -> FSet<Seq<T>> {
s.unions(|ys: Seq<_>| t.map(|zs| ys.concat(zs)))
}
/// Returns the set of sequences of length `n` whose elements are in `self`.
#[open]
#[logic]
#[requires(n >= 0)]
#[ensures(forall<xs: Seq<T>> result.contains(xs) == (xs.len() == n && forall<x: T> xs.contains(x) ==> self.contains(x)))]
#[variant(n)]
pub fn replicate(self, n: Int) -> FSet<Seq<T>> {
pearlite! {
if n == 0 {
proof_assert! { forall<xs: Seq<T>> xs.len() == 0 ==> xs == Seq::EMPTY };
FSet::singleton(Seq::EMPTY)
} else {
proof_assert! { forall<xs: Seq<T>, i: Int> 0 < i && i < xs.len() ==> xs[i] == xs.tail()[i-1] };
FSet::cons(self, self.replicate(n - 1))
}
}
}
/// Returns the set of sequences of length at most `n` whose elements are in `self`.
#[open]
#[logic]
#[requires(n >= 0)]
#[ensures(forall<xs: Seq<T>> result.contains(xs) == (xs.len() <= n && forall<x: T> xs.contains(x) ==> self.contains(x)))]
#[variant(n)]
pub fn replicate_up_to(self, n: Int) -> FSet<Seq<T>> {
pearlite! {
if n == 0 {
proof_assert! { forall<xs: Seq<T>> xs.len() == 0 ==> xs == Seq::EMPTY };
FSet::singleton(Seq::EMPTY)
} else {
self.replicate_up_to(n - 1).union(self.replicate(n))
}
}
}
}
impl FSet<Int> {
/// Return the interval of integers in `[i, j)`.
#[logic]
#[open]
#[trusted]
#[creusot::builtins = "set.FsetInt.interval"]
pub fn interval(i: Int, j: Int) -> FSet<Int> {
let _ = (i, j);
dead
}
}
/// Ghost definitions
impl<T: ?Sized> FSet<T> {
/// Create a new, empty set on the ghost heap.
#[trusted]
#[pure]
#[ensures(result.is_empty())]
#[allow(unreachable_code)]
pub fn new() -> Ghost<Self> {
Ghost::conjure()
}
/// Returns the number of elements in the set.
///
/// If you need to get the length in pearlite, consider using [`len`](Self::len).
///
/// # Example
/// ```rust,creusot
/// use creusot_contracts::{logic::FSet, *};
///
/// let mut set = FSet::new();
/// ghost! {
/// let len1 = set.len_ghost();
/// set.insert_ghost(1);
/// set.insert_ghost(2);
/// set.insert_ghost(1);
/// let len2 = set.len_ghost();
/// proof_assert!(len1 == 0);
/// proof_assert!(len2 == 2);
/// };
/// ```
#[trusted]
#[pure]
#[ensures(result == self.len())]
pub fn len_ghost(&self) -> Int {
panic!()
}
/// Returns true if the set contains the specified value.
///
/// # Example
/// ```rust,creusot
/// use creusot_contracts::{logic::FSet, *};
///
/// let mut set = FSet::new();
/// ghost! {
/// set.insert_ghost(1);
/// let (b1, b2) = (set.contains_ghost(&1), set.contains_ghost(&2));
/// proof_assert!(b1);
/// proof_assert!(!b2);
/// };
/// ```
#[pure]
#[trusted]
#[ensures(result == self.contains(*value))]
pub fn contains_ghost(&self, value: &T) -> bool {
let _ = value;
panic!()
}
/// Adds a value to the set.
///
/// Returns whether the value was newly inserted. That is:
/// - If the set did not previously contain this value, `true` is returned.
/// - If the set already contained this value, `false` is returned, and the set is
/// not modified: original value is not replaced, and the value passed as argument
/// is dropped.
///
/// # Example
/// ```rust,creusot
/// use creusot_contracts::{logic::FSet, *};
///
/// let mut set = FSet::new();
/// ghost! {
/// let res1 = set.insert_ghost(42);
/// proof_assert!(res1);
/// proof_assert!(set.contains(42i32));
///
/// let res2 = set.insert_ghost(41);
/// let res3 = set.insert_ghost(42);
/// proof_assert!(res2);
/// proof_assert!(!res3);
/// proof_assert!(set.len() == 2);
/// };
/// ```
#[trusted]
#[pure]
#[ensures(^self == (*self).insert(value))]
#[ensures(result == !(*self).contains(value))]
pub fn insert_ghost(&mut self, value: T) -> bool
where
T: Sized,
{
let _ = value;
panic!()
}
/// Same as [`Self::insert_ghost`], but for unsized values.
#[trusted]
#[pure]
#[ensures(^self == (*self).insert(*value))]
#[ensures(result == !(*self).contains(*value))]
pub fn insert_ghost_unsized(&mut self, value: Box<T>) -> bool {
let _ = value;
panic!()
}
/// Removes a value from the set. Returns whether the value was present in the set.
///
/// # Example
/// ```rust,creusot
/// use creusot_contracts::{logic::FSet, *};
///
/// let mut set = FSet::new();
/// let res = ghost! {
/// set.insert_ghost(1);
/// let res1 = set.remove_ghost(&1);
/// let res2 = set.remove_ghost(&1);
/// proof_assert!(res1 && !res2);
/// };
/// ```
#[trusted]
#[pure]
#[ensures(^self == (*self).remove(*value))]
#[ensures(result == (*self).contains(*value))]
pub fn remove_ghost(&mut self, value: &T) -> bool {
let _ = value;
panic!()
}
}
impl<T: Clone + Copy> Clone for FSet<T> {
#[pure]
#[ensures(result == *self)]
#[trusted]
fn clone(&self) -> Self {
*self
}
}
// Having `Copy` guarantees that the operation is pure, even if we decide to change the definition of `Clone`.
impl<T: Clone + Copy> Copy for FSet<T> {}
impl<T: ?Sized> Invariant for FSet<T> {
#[predicate(prophetic)]
#[open]
#[creusot::trusted_ignore_structural_inv]
#[creusot::trusted_is_tyinv_trivial_if_param_trivial]
fn invariant(self) -> bool {
pearlite! { forall<x: &T> self.contains(*x) ==> inv(*x) }
}
}
// Properties
/// Distributivity of `unions` over `union`.
#[logic]
#[open]
#[ensures(forall<s1: FSet<T>, s2: FSet<T>, f: Mapping<T, FSet<U>>> s1.union(s2).unions(f) == s1.unions(f).union(s2.unions(f)))]
#[ensures(forall<s: FSet<T>, f: Mapping<T, FSet<U>>, g: Mapping<T, FSet<U>>>
s.unions(|x| f.get(x).union(g.get(x))) == s.unions(f).union(s.unions(g)))]
pub fn unions_union<T, U>() {}
/// Distributivity of `map` over `union`.
#[logic]
#[open]
#[ensures(forall<s: FSet<T>, t: FSet<T>, f: Mapping<T, U>> s.union(t).map(f) == s.map(f).union(t.map(f)))]
pub fn map_union<T, U>() {}
/// Distributivity of `concat` over `union`.
#[logic]
#[open]
#[ensures(forall<s1: FSet<Seq<T>>, s2: FSet<Seq<T>>, t: FSet<Seq<T>>>
FSet::concat(s1.union(s2), t) == FSet::concat(s1, t).union(FSet::concat(s2, t)))]
#[ensures(forall<s: FSet<Seq<T>>, t1: FSet<Seq<T>>, t2: FSet<Seq<T>>>
FSet::concat(s, t1.union(t2)) == FSet::concat(s, t1).union(FSet::concat(s, t2)))]
pub fn concat_union<T>() {}
/// Distributivity of `cons` over `union`.
#[logic]
#[open]
#[ensures(forall<s: FSet<T>, t: FSet<Seq<T>>, u: FSet<Seq<T>>> FSet::concat(FSet::cons(s, t), u) == FSet::cons(s, FSet::concat(t, u)))]
pub fn cons_concat<T>() {
proof_assert! { forall<x: T, xs: Seq<T>, ys: Seq<T>> xs.push_front(x).concat(ys) == xs.concat(ys).push_front(x) };
proof_assert! { forall<x: T, ys: Seq<T>> ys.push_front(x).tail() == ys };
proof_assert! { forall<ys: Seq<T>> 0 < ys.len() ==> ys == ys.tail().push_front(ys[0]) };
}
/// Distributivity of `replicate` over `union`.
#[logic]
#[open]
#[requires(0 <= n && 0 <= m)]
#[ensures(s.replicate(n + m) == FSet::concat(s.replicate(n), s.replicate(m)))]
#[variant(n)]
pub fn concat_replicate<T>(n: Int, m: Int, s: FSet<T>) {
pearlite! {
if n == 0 {
concat_empty(s.replicate(m));
} else {
cons_concat::<T>();
concat_replicate(n - 1, m, s);
}
}
}
/// The neutral element of `FSet::concat` is `FSet::singleton(Seq::EMPTY)`.
#[logic]
#[open]
#[ensures(FSet::concat(FSet::singleton(Seq::EMPTY), s) == s)]
#[ensures(FSet::concat(s, FSet::singleton(Seq::EMPTY)) == s)]
pub fn concat_empty<T>(s: FSet<Seq<T>>) {
proof_assert! { forall<xs: Seq<T>> xs.concat(Seq::EMPTY) == xs };
proof_assert! { forall<xs: Seq<T>> Seq::EMPTY.concat(xs) == xs };
}
/// An equation relating `s.replicate_up_to(m)` and `s.replicate_up_to(n)`.
#[logic]
#[open]
#[requires(0 <= n && n < m)]
#[ensures(s.replicate_up_to(m) == s.replicate_up_to(n).union(
FSet::concat(s.replicate(n + 1), s.replicate_up_to(m - n - 1))))]
#[variant(m)]
pub fn concat_replicate_up_to<T>(n: Int, m: Int, s: FSet<T>) {
pearlite! {
if n + 1 == m {
concat_empty(s.replicate(n + 1));
} else {
concat_union::<T>();
concat_replicate(n, m - n - 1, s);
concat_replicate_up_to(n, m - 1, s);
}
}
}